scholarly journals Bile Salt Composition and Distribution of the D-Cysteinolic Acid Conjugated Bile Salts in Fish

1996 ◽  
Vol 62 (4) ◽  
pp. 606-609 ◽  
Author(s):  
Takanobu Goto ◽  
Takuji Ui ◽  
Mizuho Une ◽  
Taiju Kuramoto ◽  
Kenji Kihira ◽  
...  
1999 ◽  
Vol 340 (2) ◽  
pp. 445-451 ◽  
Author(s):  
Tomoji NISHIOKA ◽  
Susumu TAZUMA ◽  
Gunji YAMASHITA ◽  
Goro KAJIYAMA

Cholesterol crystallization is a key step in gallstone formation and is influenced by numerous factors. Human bile contains various bile salts having different hydrophobicity and micelle-forming capacities, but the importance of lipid composition to bile metastability remains unclear. This study investigated the effect of bile salts on cholesterol crystallization in model bile (MB) systems. Supersaturated MB systems were prepared with an identical composition on a molar basis (taurocholate/phosphatidylcholine/cholesterol, 152 mM:38 mM: 24 mM), except for partial replacement of taurocholate (10, 20, and 30%) with various taurine-conjugated bile salts. Cholesterol crystallization was quantitatively estimated by spectrophotometrically measuring crystal-related turbidity and morphologically scanned by video-enhanced microscopy. After partial replacement of taurocholate with hydrophobic bile salts, cholesterol crystallization increased dose-dependently without changing the size of vesicles or crystal morphology and the rank order of crystallization was deoxycholate > chenodeoxycholate > cholate (control MB). All of the hydrophilic bile salts (ursodeoxycholate, ursocholate and β-muricholate) inhibited cholesterol precipitation by forming a stable liquid-crystal phase, and there were no significant differences among the hydrophilic bile-salt species. Cholesterol crystallization was markedly altered by partial replacement of bile salts with a different hydrophobicity. Thus minimal changes in bile-salt composition may dramatically alter bile lipid metastability.


2000 ◽  
Vol 63 (10) ◽  
pp. 1369-1376 ◽  
Author(s):  
WILLIAM P. CHARTERIS ◽  
PHILLIP M. KELLY ◽  
LORENZO MORELLI ◽  
J. KEVIN COLLINS

Virtually every antibiotic may cause in vivo alterations in the number, level, and composition of the indigenous microbiotae. The degree to which the microbiotae are disturbed depends on many factors. Although bile may augment antibiotic activity, studies on the effect of bile on the antibiotic susceptibility of indigenous and exogenous probiotic microorganisms are lacking. It was against this background that the antibiotic susceptibility of 37 bile salt–tolerant Lactobacillus and 11 Bifidobacterium isolates from human and other sources was determined in the presence of 0.5% wt/wt oxgall (conjugated bile salts). Oxgall did not affect the intrinsic resistance of lactobacilli to metronidazole (5 μg), vancomycin (30 μg), and cotrimoxazole (25 μg), whereas it resulted in a complete loss of resistance to polymyxin B (300 μg) and the aminoglycosides gentamicin (10 μg), kanamycin (30 μg), and streptomycin (10 μg) for most strains studied (P < 0.001). Oxgall did not affect the intrinsic resistance of bifidobacteria to metronidazole and vancomycin, whereas polymyxin B and co-trimoxazole resistance was diminished (P < 0.05) and aminoglycoside resistance was lost (P < 0.001). Seven lactobacilli, but no bifidobacteria strain, showed unaltered intrinsic antibiotic resistance profiles in the presence of oxgall. Oxgall affected the extrinsic susceptibility of lactobacilli and bifidobacteria to penicillin G (10 μg), ampicillin (10 μg), tetracycline (30 μg), chloramphenicol (30 μg), erythromycin (15 μg), and rifampicin (5 μg) in a source- and strain-dependent manner. Human strain–drug combinations of lactobacilli (P < 0.05) and bifidobacteria (P < 0.01) were more likely to show no change or decreased susceptibility compared with other strain-drug combinations. The antimicrobial activity spectra of polymyxin B and the aminoglycosides should not be considered limited to gram-negative bacteria but extended to include gram-positive genera of the indigenous and transiting microbiotae in the presence of conjugated bile salts. Those lactobacilli (7 of 37) that show unaltered intrinsic and diminished extrinsic antibiotic susceptibility in the presence of oxgall may possess greater upper gastrointestinal tract transit tolerance in the presence of antibiotics.


2005 ◽  
Vol 46 (11) ◽  
pp. 2325-2338 ◽  
Author(s):  
G. Pütz ◽  
W. Schmider ◽  
R. Nitschke ◽  
G. Kurz ◽  
H. E. Blum

2013 ◽  
Vol 781-784 ◽  
pp. 1336-1340
Author(s):  
Hui Liu ◽  
Yuan Hong Xie ◽  
Tao Han ◽  
Hong Xing Zhang

Cholesterol-lowering strains were obtained by high throughput screening technology and ortho-phthalaldehyde method. We used oxford cup method to screen again to obtain strains of high yield bile salt hydrolase and illuminate action mechanism ofLactobacillusreducing cholesterol. Screened six strains had the ability of high yield bile salt hydrolase and good ferment ability. The results of identifying bacteria species: strain KTxKL1J1 wereLactobacillus casei, strain Tx wasStreptococcus thermophilus, strain KS4P1 wereLactococcus lactis subsp.lactis, where the last two bacteria were strain of high yield bile salt hydrolase to be few known in literature. This work showed that dissociation bile salts and cholesterol conjuncted sediments by bile salt hydrolase decomposing conjugated bile salts.


2021 ◽  
Vol 7 (30) ◽  
pp. eabg1371
Author(s):  
Jia Wen ◽  
Gilberto Padilla Mercado ◽  
Alyssa Volland ◽  
Heidi L. Doden ◽  
Colin R. Lickwar ◽  
...  

Bile salt synthesis, secretion into the intestinal lumen, and resorption in the ileum occur in all vertebrate classes. In mammals, bile salt composition is determined by host and microbial enzymes, affecting signaling through the bile salt–binding transcription factor farnesoid X receptor (Fxr). However, these processes in other vertebrate classes remain poorly understood. We show that key components of hepatic bile salt synthesis and ileal transport pathways are conserved and under control of Fxr in zebrafish. Zebrafish bile salts consist primarily of a C27 bile alcohol and a C24 bile acid that undergo multiple microbial modifications including bile acid deconjugation that augments Fxr activity. Using single-cell RNA sequencing, we provide a cellular atlas of the zebrafish intestinal epithelium and uncover roles for Fxr in transcriptional and differentiation programs in ileal and other cell types. These results establish zebrafish as a nonmammalian vertebrate model for studying bile salt metabolism and Fxr signaling.


2000 ◽  
Vol 46 (10) ◽  
pp. 878-884 ◽  
Author(s):  
J P Grill ◽  
S Perrin ◽  
F Schneider

The purpose of this work was to study some aspects of bile salt toxicity towards bifidobacteria. A strain (Bifidobacterium coryneforme ATCC 25911) was selected for its lack of conjugated bile salt hydrolase activity (CBSH-), and was used with three deconjugating strains (CBSH+), for study of their growth and viability in the presence of two dihydroxylated conjugated bile salts (tauro- and glyco-deoxycholic acids). The presence of the glycoconjugate induced a more significant growth inhibition for the four strains than the tauroconjugate. The viability of the strains was measured at several pH levels. Glycodeoxycholic acid, but not taurodeoxycholic acid, exerted a lethal effect, which increased at low pH. This phenomenon was more pronounced for the CBSH-strain. We explain some of these results using an hypothesis based on the consequence of dissociation of conjugated and deconjugated bile salts, and the value of their pKa.Key words: Bifidobacterium, viability, bile salt, deconjugation.


2020 ◽  
Author(s):  
Jia Wen ◽  
Gilberto Padilla Mercado ◽  
Alyssa Volland ◽  
Heidi L Doden ◽  
Colin R Lickwar ◽  
...  

Bile salt synthesis, secretion into the intestinal lumen, and resorption in the ileum occurs in all vertebrate classes. In mammals, bile salt composition is determined by host and microbial enzymes, affecting signaling through the bile salt-binding transcription factor Farnesoid X receptor (Fxr). However, these processes in other vertebrate classes remain poorly understood. We show that key components of hepatic bile salt synthesis and ileal transport pathways are conserved and under control of Fxr in zebrafish. Zebrafish bile salts consist primarily of a C27 bile alcohol and a C24 bile acid which undergo multiple microbial modifications including bile acid deconjugation that augments Fxr activity. Using single-cell RNA sequencing, we provide a cellular atlas of the zebrafish intestinal epithelium and uncover roles for Fxr in transcriptional and differentiation programs in ileal and other cell types. These results establish zebrafish as a non-mammalian vertebrate model for studying bile salt metabolism and Fxr signaling.


Sign in / Sign up

Export Citation Format

Share Document