scholarly journals Palmitate-Mediated Downregulation of Peroxisome Proliferator-Activated Receptor-  Coactivator 1  in Skeletal Muscle Cells Involves MEK1/2 and Nuclear Factor- B Activation

Diabetes ◽  
2006 ◽  
Vol 55 (10) ◽  
pp. 2779-2787 ◽  
Author(s):  
T. Coll ◽  
M. Jove ◽  
R. Rodriguez-Calvo ◽  
E. Eyre ◽  
X. Palomer ◽  
...  
2020 ◽  
Vol 319 (3) ◽  
pp. C541-C551
Author(s):  
Hygor N. Araujo ◽  
Tanes I. Lima ◽  
Dimitrius Santiago P. S. F. Guimarães ◽  
Andre G. Oliveira ◽  
Bianca C. Favero-Santos ◽  
...  

Lin28a/miRNA let-7b-5p pathway has emerged as a key regulators of energy homeostasis in the skeletal muscle. However, the mechanism through which this pathway is regulated in the skeletal muscle has remained unclear. We have found that 8 wk of aerobic training (Tr) markedly decreased let-7b-5p expression in murine skeletal muscle, whereas high-fat diet (Hfd) increased its expression. Conversely, Lin28a expression, a well-known inhibitor of let-7b-5p, was induced by Tr and decreased by Hfd. Similarly, in human muscle biopsies, Tr increased LIN28 expression and decreased let-7b-5p expression. Bioinformatics analysis of LIN28a DNA sequence revealed that its enrichment in peroxisome proliferator-activated receptor delta (PPARδ) binding sites, which is a well-known metabolic regulator of exercise. Treatment of primary mouse skeletal muscle cells or C2C12 cells with PPARδ activators GW501516 and AICAR increased Lin28a expression. Lin28a and let-7b-5p expression was also regulated by PPARδ coregulators. While PPARγ coactivator-1α (PGC1α) increased Lin28a expression, corepressor NCoR1 decreased its expression. Furthermore, PGC1α markedly reduced the let-7b-5p expression. PGC1α-mediated induction of Lin28a expression was blocked by the PPARδ inhibitor GSK0660. In agreement, Lin28a expression was downregulated in PPARδ knocked-down cells leading to increased let-7b-5p expression. Finally, we show that modulation of the Lin28a- let-7b-5p pathway in muscle cells leads to changes in mitochondrial metabolism in PGC1α dependent fashion. In summary, we demonstrate that Lin28a- let-7b-5p is a direct target of PPARδ in the skeletal muscle, where it impacts mitochondrial respiration.


Endocrinology ◽  
2010 ◽  
Vol 151 (4) ◽  
pp. 1560-1569 ◽  
Author(s):  
Teresa Coll ◽  
David Álvarez-Guardia ◽  
Emma Barroso ◽  
Anna Maria Gómez-Foix ◽  
Xavier Palomer ◽  
...  

Elevated plasma free fatty acids cause insulin resistance in skeletal muscle through the activation of a chronic inflammatory process. This process involves nuclear factor (NF)-κB activation as a result of diacylglycerol (DAG) accumulation and subsequent protein kinase Cθ (PKCθ) phosphorylation. At present, it is unknown whether peroxisome proliferator-activated receptor-δ (PPARδ) activation prevents fatty acid-induced inflammation and insulin resistance in skeletal muscle cells. In C2C12 skeletal muscle cells, the PPARδ agonist GW501516 prevented phosphorylation of insulin receptor substrate-1 at Ser307 and the inhibition of insulin-stimulated Akt phosphorylation caused by exposure to the saturated fatty acid palmitate. This latter effect was reversed by the PPARδ antagonist GSK0660. Treatment with the PPARδ agonist enhanced the expression of two well known PPARδ target genes involved in fatty acid oxidation, carnitine palmitoyltransferase-1 and pyruvate dehydrogenase kinase 4 and increased the phosphorylation of AMP-activated protein kinase, preventing the reduction in fatty acid oxidation caused by palmitate exposure. In agreement with these changes, GW501516 treatment reversed the increase in DAG and PKCθ activation caused by palmitate. These effects were abolished in the presence of the carnitine palmitoyltransferase-1 inhibitor etomoxir, thereby indicating that increased fatty acid oxidation was involved in the changes observed. Consistent with these findings, PPARδ activation by GW501516 blocked palmitate-induced NF-κB DNA-binding activity. Likewise, drug treatment inhibited the increase in IL-6 expression caused by palmitate in C2C12 and human skeletal muscle cells as well as the protein secretion of this cytokine. These findings indicate that PPARδ attenuates fatty acid-induced NF-κB activation and the subsequent development of insulin resistance in skeletal muscle cells by reducing DAG accumulation. Our results point to PPARδ activation as a pharmacological target to prevent insulin resistance.


Endocrinology ◽  
2006 ◽  
Vol 147 (1) ◽  
pp. 552-561 ◽  
Author(s):  
Mireia Jové ◽  
Anna Planavila ◽  
Rosa M. Sánchez ◽  
Manuel Merlos ◽  
Juan Carlos Laguna ◽  
...  

The mechanisms responsible for increased expression of TNF-α in skeletal muscle cells in diabetic states are not well understood. We examined the effects of the saturated acid palmitate on TNF-α expression. Exposure of C2C12 skeletal muscle cells to 0.75 mm palmitate enhanced mRNA (25-fold induction, P < 0.001) and protein (2.5-fold induction) expression of the proinflammatory cytokine TNF-α. This induction was inversely correlated with a fall in GLUT4 mRNA levels (57% reduction, P < 0.001) and glucose uptake (34% reduction, P < 0.001). PD98059 and U0126, inhibitors of the ERK-MAPK cascade, partially prevented the palmitate-induced TNF-α expression. Palmitate increased nuclear factor (NF)-κB activation and incubation of the cells with the NF-κB inhibitors pyrrolidine dithiocarbamate and parthenolide partially prevented TNF-α expression. Incubation of palmitate-treated cells with calphostin C, a strong and specific inhibitor of protein kinase C (PKC), abolished palmitate-induced TNF-α expression, and restored GLUT4 mRNA levels. Palmitate treatment enhanced the expression of phospho-PKCθ, suggesting that this PKC isoform was involved in the changes reported, and coincubation of palmitate-treated cells with the PKC inhibitor chelerythrine prevented the palmitate-induced reduction in the expression of IκBα and insulin-stimulated Akt activation. These findings suggest that enhanced TNF-α expression and GLUT4 down-regulation caused by palmitate are mediated through the PKC activation, confirming that this enzyme may be a target for either the prevention or the treatment of fatty acid-induced insulin resistance.


Sign in / Sign up

Export Citation Format

Share Document