scholarly journals Spatial Regulation of Reactive Oxygen Species via G6PD in Brown Adipocytes Supports Thermogenic Function

Diabetes ◽  
2021 ◽  
pp. db210272
Author(s):  
Jee Hyung Sohn ◽  
Yul Ji ◽  
Chang-Yun Cho ◽  
Hahn Nahmgoong ◽  
Sangsoo Lim ◽  
...  
2021 ◽  
Author(s):  
Jee Hyung Sohn ◽  
Yul Ji ◽  
Chang-Yun Cho ◽  
Hahn Nahmgoong ◽  
Sangsoo Lim ◽  
...  

Reactive oxygen species (ROS) are associated with various roles of brown adipocytes. Glucose-6-phosphate dehydrogenase (G6PD) controls cellular redox potentials by producing NADPH. Although G6PD upregulates cellular ROS levels in white adipocytes, the roles of G6PD in brown adipocytes remain elusive. Here, we found that G6PD defect in brown adipocytes impaired thermogenic function through excessive cytosolic ROS accumulation. Upon cold exposure, G6PD-deficient mutant (G6PD<sup>mut</sup>) mice exhibited cold intolerance and downregulated thermogenic gene expression in brown adipose tissue (BAT). In addition, G6PD-deficient brown adipocytes had increased cytosolic ROS levels, leading to ERK activation. In BAT of G6PD<sup>mut</sup> mice, administration of antioxidant restored the thermogenic activity by potentiating thermogenic gene expression and relieving ERK activation. Consistently, body temperature and thermogenic execution were rescued by ERK inhibition in cold-exposed G6PD<sup>mut</sup> mice. Taken together, these data suggest that G6PD in brown adipocytes would protect against cytosolic oxidative stress, leading to cold-induced thermogenesis.


2021 ◽  
Author(s):  
Jee Hyung Sohn ◽  
Yul Ji ◽  
Chang-Yun Cho ◽  
Hahn Nahmgoong ◽  
Sangsoo Lim ◽  
...  

Reactive oxygen species (ROS) are associated with various roles of brown adipocytes. Glucose-6-phosphate dehydrogenase (G6PD) controls cellular redox potentials by producing NADPH. Although G6PD upregulates cellular ROS levels in white adipocytes, the roles of G6PD in brown adipocytes remain elusive. Here, we found that G6PD defect in brown adipocytes impaired thermogenic function through excessive cytosolic ROS accumulation. Upon cold exposure, G6PD-deficient mutant (G6PD<sup>mut</sup>) mice exhibited cold intolerance and downregulated thermogenic gene expression in brown adipose tissue (BAT). In addition, G6PD-deficient brown adipocytes had increased cytosolic ROS levels, leading to ERK activation. In BAT of G6PD<sup>mut</sup> mice, administration of antioxidant restored the thermogenic activity by potentiating thermogenic gene expression and relieving ERK activation. Consistently, body temperature and thermogenic execution were rescued by ERK inhibition in cold-exposed G6PD<sup>mut</sup> mice. Taken together, these data suggest that G6PD in brown adipocytes would protect against cytosolic oxidative stress, leading to cold-induced thermogenesis.


2016 ◽  
Vol 36 (2) ◽  
Author(s):  
Lars Rebiger ◽  
Sigurd Lenzen ◽  
Ilir Mehmeti

Pro-inflammatory cytokine-induced brown adipocyte dysfunction and consecutive cell death is mediated by suppression of the mitochondrial uncoupling protein 1 and concomitant generation of reactive oxygen species.


2009 ◽  
pp. c3 ◽  
Author(s):  
Helena M. Cochemé ◽  
Michael P. Murphy

2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


2001 ◽  
Vol 120 (5) ◽  
pp. A361-A361
Author(s):  
K UCHIKURA ◽  
T WADA ◽  
Z SUN ◽  
S HOSHINO ◽  
G BULKLEY ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document