Enhanced Stimulation of Diacylglycerol and Lipid Synthesis by Insulin in Denervated Muscle: Altered Protein Kinase C Activity and Possible Link to Insulin Resistance

Diabetes ◽  
1991 ◽  
Vol 40 (12) ◽  
pp. 1707-1711 ◽  
Author(s):  
S. J. Heydrick ◽  
N. B. Ruderman ◽  
T. G. Kurowski ◽  
H. B. Adams ◽  
K. S. Chen
1987 ◽  
Vol 253 (2) ◽  
pp. C219-C229 ◽  
Author(s):  
L. L. Muldoon ◽  
G. A. Jamieson ◽  
A. C. Kao ◽  
H. C. Palfrey ◽  
M. L. Villereal

The mitogen-induced activation of Na+-H+ exchange was investigated in two cultured human fibroblast strains (HSWP and WI-38 cells) that, based on previous studies, differed in their response to the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) (L. M. Vincentini and M. L. Villereal, Proc. Natl. Acad. Sci. USA 82: 8053-8056, 1985). The role of protein kinase C in the activation of Na+-H+ exchange was investigated by comparing the effects of TPA on Na+ influx, in vitro phosphorylation, and in vivo phosphorylation in both cell types. Although both cell types have significant quantities of protein kinase C activity that can be activated by TPA in intact cells, the addition of TPA to intact cells stimulates Na+ influx in WI-38 cells but not in HSWP cells, indicating that in HSWP cells the stimulation of protein kinase C is not sufficient to activate the Na+-H+ exchanger. Cells were then depleted of protein kinase C activity by chronic treatment with high doses of TPA. Both HSWP and WI-38 cells were rendered protein kinase C deficient by this treatment as determined by in vitro and in vivo phosphorylation studies. Protein kinase C-deficient HSWP cells lose the ability for TPA to inhibit the serum-induced activation of Na+-H+ exchange, but there is no reduction in the stimulation of Na+ influx by serum, bradykinin, vasopressin, melittin, or vanadate, indicating that protein kinase C activity is not necessary for the mitogen-induced activation of Na+-H+ exchange in HSWP cells by agents known to stimulate phosphatidylinositol turnover (G. A. Jamieson and M. Villereal. Arch. Biochem. Biophys. 252: 478-486, 1987). In contrast, depletion of protein kinase C activity in WI-38 cells significantly reduces both the TPA- and the serum-induced activation of the Na+-H+ exchange system, suggesting that protein kinase C activity is necessary for at least a portion of the mitogen-induced activation of the Na+-H+ exchanger in WI-38 cells. These results indicate that the mechanisms for regulating Na+-H+ exchange can differ dramatically between different types of fibroblasts.


Life Sciences ◽  
1989 ◽  
Vol 44 (23) ◽  
pp. 1787-1792 ◽  
Author(s):  
Marie Donabella Sauro ◽  
Arthur R. Buckley ◽  
Diane Haddock Russell ◽  
David F. Fitzpatrick

1990 ◽  
Vol 15 (5) ◽  
pp. 515-518 ◽  
Author(s):  
Zolt�n Ol�h ◽  
Junichi Ikeda ◽  
Wayne B. Anderson ◽  
Ferenc Jo�

1990 ◽  
Vol 10 (8) ◽  
pp. 4284-4293 ◽  
Author(s):  
S E McDonnell ◽  
L D Kerr ◽  
L M Matrisian

Stromelysin (transin) is a secreted metalloprotease that is transcriptionally induced by a variety of growth factors and oncogenes. We examined the necessity of specific secondary (protein kinase C) and tertiary (c-fos and c-jun protein products) messengers in the transactivation of stromelysin gene expression by epidermal growth factor (EGF). Rat-1 fibroblasts exposed to antisense c-fos DNA or RNA demonstrated that c-fos expression was necessary for complete EGF induction of stromelysin expression. Similar results demonstrating the necessity of c-jun protein in the EGF induction of stromelysin were obtained. We also demonstrated that protein kinase C activation is required for the EGF induction of stromelysin, since phorbol ester desensitization of C kinase proteins abolished the ability of EGF to induce stromelysin mRNA, protein, and promoter activity. In reconstitution experiments, neither c-fos, c-jun, nor C kinase activation alone induced significant stromelysin expression. Overexpression of c-fos and c-jun was able to induce stromelysin to a level similar to that of the growth factor, and stimulation of protein kinase C activity augmented this induction. The data suggest that the EGF induction of stromelysin in rat fibroblasts procedes through a pathway involving c-fos, c-jun, and protein kinase C.


Blood ◽  
1986 ◽  
Vol 67 (4) ◽  
pp. 909-913 ◽  
Author(s):  
MC Pike ◽  
L Jakoi ◽  
LC McPhail ◽  
R Snyderman

Low doses of aliphatic alcohols produce divergent effects on the function of chemoattractant receptors on human polymorphonuclear leukocytes (PMNs) since they enhance chemotaxis but inhibit stimulation of superoxide production by chemoattractants. As such, alcohols can provide useful pharmacologic tools to probe the mechanisms of stimulus- response coupling in leukocytes. A role for protein kinase C has been implicated in the activation of the respiratory burst in PMNs. Although the vast majority of this enzyme activity is located in the cytosolic fraction of unactivated PMNs, protein kinase C activity appears in the particulate fraction of the cells when they are stimulated to produce superoxide by either chemoattractants or by phorbol myristate acetate (PMA). Doses of the alcohols that selectively inhibited stimulation of superoxide production by chemoattractants also inhibited the appearance of protein kinase C activity as well as an undefined protein kinase activity in the particulate fraction of the cells. In contrast, the alcohols did not affect either the ability of PMA to stimulate the production of superoxide in PMNs nor the appearance of protein kinase activity in the cells' particulate fraction. PMA is known to bind and activate protein kinase C directly, thus bypassing receptor-mediated events. These data suggest that alcohols inhibit the stimulation of the respiratory burst by chemoattractants in PMNs by blocking the ability of receptor occupancy to induce the appearance of protein kinase activity in particulate fractions. These results moreover suggest that the appearance of protein kinase activity in the particulate fraction may be required for activation of the respiratory burst in PMNs.


Sign in / Sign up

Export Citation Format

Share Document