scholarly journals β cell-specific deletion of HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase causes overt diabetes due to reduction of β cell mass and impaired insulin secretion

Author(s):  
Ada Admin ◽  
Shoko Takei ◽  
Shuichi Nagashima ◽  
Akihito Takei ◽  
Daisuke Yamamuro ◽  
...  

Inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), statins, which are used to prevent cardiovascular diseases, are associated with a modest increase in the risk of new-onset diabetes mellitus. To investigate the role of HMGCR in the development of β cells and glucose homeostasis, we deleted <i>Hmgcr</i> in a β cell-specific manner by using the Cre-loxP technique. Mice lacking <i>Hmgcr</i> in β cells (β-KO) exhibited hypoinsulinemic hyperglycemia as early as postnatal day 9 (P9) due to decreases in both β cell mass and insulin secretion. Ki67 positive cells were reduced in β-KO mice at P9, thus β cell mass reduction was caused by proliferation disorder immediately after birth. The mRNA expression of <i>neurogenin3 (Ngn3)</i>, which is transiently expressed in endocrine progenitors of the embryonic pancreas, was maintained despite a striking reduction in the expression of β cell-associated genes, such as <i>insulin</i>, <i>Pancreatic and duodenal homeobox 1</i> <i>(Pdx1)</i> and <i>MAF BZIP transcription factor A (</i><i>Mafa)</i> in the islets from β-KO mice. Histological analyses revealed dysmorphic islets with markedly reduced numbers of β cells, some of which were also positive for glucagon. In conclusion, HMGCR plays critical roles not only in insulin secretion but also in the development of β cells in mice.

2020 ◽  
Author(s):  
Ada Admin ◽  
Shoko Takei ◽  
Shuichi Nagashima ◽  
Akihito Takei ◽  
Daisuke Yamamuro ◽  
...  

Inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), statins, which are used to prevent cardiovascular diseases, are associated with a modest increase in the risk of new-onset diabetes mellitus. To investigate the role of HMGCR in the development of β cells and glucose homeostasis, we deleted <i>Hmgcr</i> in a β cell-specific manner by using the Cre-loxP technique. Mice lacking <i>Hmgcr</i> in β cells (β-KO) exhibited hypoinsulinemic hyperglycemia as early as postnatal day 9 (P9) due to decreases in both β cell mass and insulin secretion. Ki67 positive cells were reduced in β-KO mice at P9, thus β cell mass reduction was caused by proliferation disorder immediately after birth. The mRNA expression of <i>neurogenin3 (Ngn3)</i>, which is transiently expressed in endocrine progenitors of the embryonic pancreas, was maintained despite a striking reduction in the expression of β cell-associated genes, such as <i>insulin</i>, <i>Pancreatic and duodenal homeobox 1</i> <i>(Pdx1)</i> and <i>MAF BZIP transcription factor A (</i><i>Mafa)</i> in the islets from β-KO mice. Histological analyses revealed dysmorphic islets with markedly reduced numbers of β cells, some of which were also positive for glucagon. In conclusion, HMGCR plays critical roles not only in insulin secretion but also in the development of β cells in mice.


2006 ◽  
Vol 26 (12) ◽  
pp. 4553-4563 ◽  
Author(s):  
Seon-Yong Yeom ◽  
Geun Hyang Kim ◽  
Chan Hee Kim ◽  
Heun Don Jung ◽  
So-Yeon Kim ◽  
...  

ABSTRACT Activating signal cointegrator 2 (ASC-2) is a transcriptional coactivator of many nuclear receptors (NRs) and other transcription factors and contains two NR-interacting LXXLL motifs (NR boxes). In the pancreas, ASC-2 is expressed only in the endocrine cells of the islets of Langerhans, but not in the exocrine cells. Thus, we examined the potential role of ASC-2 in insulin secretion from pancreatic β-cells. Overexpressed ASC-2 increased glucose-elicited insulin secretion, whereas insulin secretion was decreased in islets from ASC-2+/− mice. DN1 and DN2 are two dominant-negative fragments of ASC-2 that contain NR boxes 1 and 2, respectively, and block the interactions of cognate NRs with the endogenous ASC-2. Primary rat islets ectopically expressing DN1 or DN2 exhibited decreased insulin secretion. Furthermore, relative to the wild type, ASC-2+/− mice showed reduced islet mass and number, which correlated with increased apoptosis and decreased proliferation of ASC-2+/− islets. These results suggest that ASC-2 regulates insulin secretion and β-cell survival and that the regulatory role of ASC-2 in insulin secretion appears to involve, at least in part, its interaction with NRs via its two NR boxes.


Diabetes ◽  
2020 ◽  
Vol 69 (11) ◽  
pp. 2352-2363
Author(s):  
Shoko Takei ◽  
Shuichi Nagashima ◽  
Akihito Takei ◽  
Daisuke Yamamuro ◽  
Tetsuji Wakabayashi ◽  
...  

2021 ◽  
Author(s):  
Yin Liu ◽  
Siyuan He ◽  
Ruixue Zhou ◽  
Xueping Zhang ◽  
Shanshan Yang ◽  
...  

Pancreatic β-cell mass and insulin secretion are determined by the dynamic change of transcription factor expression levels in response to altered metabolic demand. Nuclear factor-Y (NF-Y) is an evolutionarily conserved transcription factor playing critical roles in multiple cellular processes. However, the physiological role of NF-Y in pancreatic β-cells is poorly understood. The present study was undertaken in a conditional knockout of <i>Nf-ya</i> specifically in pancreatic β-cells (<i>Nf-ya </i>βKO) to define the essential physiological role of NF-Y in β-cells. <i>Nf-ya </i>βKO mice exhibited glucose intolerance without changes in insulin sensitivity. Reduced β-cell proliferation resulting in decreased β-cell mass was observed in these mice, which was associated with disturbed actin cytoskeleton. NF-Y-deficient β-cells also exhibited impaired insulin secretion with a reduced Ca<sup>2+</sup> influx in response to glucose, which was associated an inefficient glucose uptake into β-cells due to a decreased expression of glucose transporter 2 and a reduction in ATP production resulting from the disruption of mitochondrial integrity. This study is the first to show that NF-Y is critical for pancreatic islets homeostasis and function through regulation in β-cell proliferation, glucose uptake into β-cells, and mitochondrial energy metabolism. Modulating NF-Y expression in β-cells may therefore offer an attractive approach for therapeutic intervention.


2021 ◽  
Author(s):  
Yves Mugabo ◽  
Cheng Zhao ◽  
Ju Jing Tan ◽  
Anindya Ghosh ◽  
Scott A Campbell ◽  
...  

While critical for neurotransmitter synthesis in the brain, members of the 14-3-3 protein family are often assumed to have redundant, over-lapping roles due to their high sequence homology and ubiquitous expression. Despite this assumption, various mammalian 14-3-3 isoforms have now been implicated in regulating cellular and organismal metabolism; however, these functions were primarily observed in cell lines or from systemic knockout mouse models. To date, we have begun to define the contributions of 14-3-3ζ in adipocytes, but whether 14-3-3ζ has additional metabolic roles in other cell types, such as the pancreatic β-cell, is unclear. We previously documented a pro-survival role of 14-3-3ζ in MIN6 insulinoma cells, as depletion of 14-3-3ζ induced cell death, but paradoxically, whole-body deletion of 14-3-3ζ knockout in mice resulted in significantly enlarged β-cell area with no effects on insulin secretion. To better understand the role of 14-3-3ζ in β-cells, we generated β-cell-specific 14-3-3ζ knockout (β14-3-3ζKO) mice, and while no differences in β-cell mass were observed, β14-3-3ζKO mice displayed potentiated insulin secretion due to enhanced mitochondrial function and ATP synthesis. Deletion of 14-3-3ζ led to profound changes to the β-cell transcriptome, where pathways associated with mitochondrial respiration and oxidative phosphorylation were upregulated. Acute treatment of mouse islets and human islets with pan-14-3-3 inhibitors recapitulated the potentiation in glucose-stimulated insulin secretion (GSIS) and mitochondrial function, suggesting that 14-3-3ζ is a critical isoform inβ-cells that regulates GSIS. In dysfunctional db/db islets and islets from type 2 diabetic donors, expression of Ywhaz/YWHAZ, the gene encoding 14-3-3ζ, was inversely associated with insulin secretory capacity, and pan-14-3-3 protein inhibition was capable of enhancing GSIS and mitochondrial function. Taken together, this study demonstrates important regulatory functions of 14-3-3ζ and its related isoforms in insulin secretion and mitochondrial function in β-cells. A deeper understanding of how 14-3-3ζ influences β-cell function will further advance our knowledge of how insulin secretion from β-cells is regulated.


2021 ◽  
Author(s):  
Yin Liu ◽  
Siyuan He ◽  
Ruixue Zhou ◽  
Xueping Zhang ◽  
Shanshan Yang ◽  
...  

Pancreatic β-cell mass and insulin secretion are determined by the dynamic change of transcription factor expression levels in response to altered metabolic demand. Nuclear factor-Y (NF-Y) is an evolutionarily conserved transcription factor playing critical roles in multiple cellular processes. However, the physiological role of NF-Y in pancreatic β-cells is poorly understood. The present study was undertaken in a conditional knockout of <i>Nf-ya</i> specifically in pancreatic β-cells (<i>Nf-ya </i>βKO) to define the essential physiological role of NF-Y in β-cells. <i>Nf-ya </i>βKO mice exhibited glucose intolerance without changes in insulin sensitivity. Reduced β-cell proliferation resulting in decreased β-cell mass was observed in these mice, which was associated with disturbed actin cytoskeleton. NF-Y-deficient β-cells also exhibited impaired insulin secretion with a reduced Ca<sup>2+</sup> influx in response to glucose, which was associated an inefficient glucose uptake into β-cells due to a decreased expression of glucose transporter 2 and a reduction in ATP production resulting from the disruption of mitochondrial integrity. This study is the first to show that NF-Y is critical for pancreatic islets homeostasis and function through regulation in β-cell proliferation, glucose uptake into β-cells, and mitochondrial energy metabolism. Modulating NF-Y expression in β-cells may therefore offer an attractive approach for therapeutic intervention.


2020 ◽  
Author(s):  
Ada Admin ◽  
Yanqiu Wang ◽  
Jiajun Sun ◽  
Zhen Lin ◽  
Weizhen Zhang ◽  
...  

<a>m<sup>6</sup>A RNA modification is essential during embryonic development of various organs; however, its role in embryonic and early postnatal islet development remains unknown.</a><a></a><a> </a>Mice in which RNA methyltransferase-like 3/14 (Mettl3/14) were deleted in Ngn3<sup>+</sup> endocrine progenitors (<i>Mettl3/14<sup>nKO</sup></i>) developed hyperglycemia and hypo-insulinemia at 2 weeks after birth. <a></a><a>We found that Mettl3/14 specifically regulated both functional maturation and mass expansion of neonatal</a><a></a><a> β cell</a>s before weaning. Transcriptome and m<sup>6</sup>A methylome analyses provided m<sup>6</sup>A-dependent mechanisms in regulating<a> cell</a> identity, insulin secretion and proliferation in neonatal<a></a><a> </a><a></a><a>β</a> cells.<a></a><a> Importantly, we found that Mettl3/14 were dispensable for β cell differentiation, but directly regulated essential transcriptional factor MafA expression</a><a> at least partially via modulating its mRNA stability and failure to maintain this modification impacted the ability to fulfill β cell functional maturity. </a>In both diabetic <i>db/db</i> mice and type 2 diabetes patients, decreased Mettl3/14 expression in <a></a><a>β</a> cells were observed, suggesting its possible role in type 2 diabetes. Our stud­­­­­­<sub>­­­</sub>y unraveled the essential role of Mettl3/14 in neonatal β cell development and functional maturation, both of which determined functional β cell mass and glycemic control in adulthood.<b></b>


2020 ◽  
Author(s):  
Ada Admin ◽  
Yanqiu Wang ◽  
Jiajun Sun ◽  
Zhen Lin ◽  
Weizhen Zhang ◽  
...  

<a>m<sup>6</sup>A RNA modification is essential during embryonic development of various organs; however, its role in embryonic and early postnatal islet development remains unknown.</a><a></a><a> </a>Mice in which RNA methyltransferase-like 3/14 (Mettl3/14) were deleted in Ngn3<sup>+</sup> endocrine progenitors (<i>Mettl3/14<sup>nKO</sup></i>) developed hyperglycemia and hypo-insulinemia at 2 weeks after birth. <a></a><a>We found that Mettl3/14 specifically regulated both functional maturation and mass expansion of neonatal</a><a></a><a> β cell</a>s before weaning. Transcriptome and m<sup>6</sup>A methylome analyses provided m<sup>6</sup>A-dependent mechanisms in regulating<a> cell</a> identity, insulin secretion and proliferation in neonatal<a></a><a> </a><a></a><a>β</a> cells.<a></a><a> Importantly, we found that Mettl3/14 were dispensable for β cell differentiation, but directly regulated essential transcriptional factor MafA expression</a><a> at least partially via modulating its mRNA stability and failure to maintain this modification impacted the ability to fulfill β cell functional maturity. </a>In both diabetic <i>db/db</i> mice and type 2 diabetes patients, decreased Mettl3/14 expression in <a></a><a>β</a> cells were observed, suggesting its possible role in type 2 diabetes. Our stud­­­­­­<sub>­­­</sub>y unraveled the essential role of Mettl3/14 in neonatal β cell development and functional maturation, both of which determined functional β cell mass and glycemic control in adulthood.<b></b>


2009 ◽  
Vol 297 (6) ◽  
pp. E1304-E1312 ◽  
Author(s):  
Diana Choi ◽  
Anna Radziszewska ◽  
Stephanie A. Schroer ◽  
Nicole Liadis ◽  
Yunfeng Liu ◽  
...  

Fas/Fas ligand belongs to the tumor necrosis factor superfamily of receptors/ligands and is best known for its role in apoptosis. However, recent evidence supports its role in other cellular responses, including proliferation and survival. Although Fas has been implicated as an essential mediator of β-cell death in the pathogenesis of type 1 diabetes, the essential role of Fas specifically in pancreatic β-cells has been found to be controversial. Moreover, the role of Fas on β-cell homeostasis and function is not clear. The objective of this study is to determine the role of Fas specifically in β-cells under both physiological and diabetes models. Mice with Fas deletion specifically in the β-cells were generated using the Cre-loxP system. Cre-mediated Fas deletion was under the control of the rat insulin promoter. Absence of Fas in β-cells leads to complete protection against FasL-induced cell death. However, Fas is not essential in determining β-cell mass or susceptibility to streptozotocin- or HFD-induced diabetes. Importantly, Fas deletion in β-cells leads to increased p65 expression, enhanced glucose tolerance, and glucose-stimulated insulin secretion, with increased exocytosis as manifested by increased changes in membrane capacitance and increased expression of Syntaxin1A, VAMP2, and munc18a. Together, our study shows that Fas in the β-cells indeed plays an essential role in the canonical death receptor-mediated apoptosis but is not essential in regulating β-cell mass or diabetes development. However, β-cell Fas is critical in the regulation of glucose homeostasis through regulation of the exocytosis machinery.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brenda Strutt ◽  
Sandra Szlapinski ◽  
Thineesha Gnaneswaran ◽  
Sarah Donegan ◽  
Jessica Hill ◽  
...  

AbstractThe apelin receptor (Aplnr) and its ligands, Apelin and Apela, contribute to metabolic control. The insulin resistance associated with pregnancy is accommodated by an expansion of pancreatic β-cell mass (BCM) and increased insulin secretion, involving the proliferation of insulin-expressing, glucose transporter 2-low (Ins+Glut2LO) progenitor cells. We examined changes in the apelinergic system during normal mouse pregnancy and in pregnancies complicated by glucose intolerance with reduced BCM. Expression of Aplnr, Apelin and Apela was quantified in Ins+Glut2LO cells isolated from mouse pancreata and found to be significantly higher than in mature β-cells by DNA microarray and qPCR. Apelin was localized to most β-cells by immunohistochemistry although Aplnr was predominantly associated with Ins+Glut2LO cells. Aplnr-staining cells increased three- to four-fold during pregnancy being maximal at gestational days (GD) 9–12 but were significantly reduced in glucose intolerant mice. Apelin-13 increased β-cell proliferation in isolated mouse islets and INS1E cells, but not glucose-stimulated insulin secretion. Glucose intolerant pregnant mice had significantly elevated serum Apelin levels at GD 9 associated with an increased presence of placental IL-6. Placental expression of the apelinergic axis remained unaltered, however. Results show that the apelinergic system is highly expressed in pancreatic β-cell progenitors and may contribute to β-cell proliferation in pregnancy.


Sign in / Sign up

Export Citation Format

Share Document