scholarly journals Shorter average chain length of n-alkanes from flowers than leaves of modern plants: Implications for the use of n-alkane-derived proxies in soils

2021 ◽  
Vol 55 (5) ◽  
pp. e19-e23
Author(s):  
Yue Fang ◽  
Jing Yang ◽  
Shijing Zhao ◽  
Jie Wu ◽  
Yuying Huang ◽  
...  
1975 ◽  
Vol 30 (12) ◽  
pp. 1633-1639 ◽  
Author(s):  
W. Hoyer ◽  
E. Thomas ◽  
M. Wobst

Abstract At temperatures just above the melting point molten Selenium seems to be a mixture of long chains and eight-membered rings. With increasing temperature the number of rings and the average chain length decrease. At 460 °C the average chain length lies in the range of 10 atoms.In a slightly supercooled Tellurium-melt the number of first neighbours is two. The atoms are arranged in chains. Selenium rich Se-Te-alloy-melts are built up of mixed chains. It seems to be possible, that a smaller part of atoms forms Se6Te2 rings. At Tellurium concentrations higher than approximately 50 at.-% the chainlike structure with two next nearest neighbours changes to a disturbed Arsen-like short range order. The number of electrons in the first coordination shell, the short range order parameter introduced by Cowley and the partial coordination numbers show that Se-Te-alloys are of the "solution system" type, but in the whole concentration range for each atom there is a tendency to have "strange coordination".


2006 ◽  
Vol 6 (2) ◽  
pp. 328-336 ◽  
Author(s):  
Kariona A. Grabińska ◽  
Paula Magnelli ◽  
Phillips W. Robbins

ABSTRACT Chs4p (Cal2/Csd4/Skt5) was identified as a protein factor physically interacting with Chs3p, the catalytic subunit of chitin synthase III (CSIII), and is indispensable for its enzymatic activity in vivo. Chs4p contains a putative farnesyl attachment site at the C-terminal end (CVIM motif) conserved in Chs4p of Saccharomyces cerevisiae and other fungi. Several previous reports questioned the role of Chs4p prenylation in chitin biosynthesis. In this study we reinvestigated the function of Chs4p prenylation. We provide evidence that Chs4p is farnesylated by showing that purified Chs4p is recognized by anti-farnesyl antibody and is a substrate for farnesyl transferase (FTase) in vitro and that inactivation of FTase increases the amount of unmodified Chs4p in yeast cells. We demonstrate that abolition of Chs4p prenylation causes a ∼60% decrease in CSIII activity, which is correlated with a ∼30% decrease in chitin content and with increased resistance to the chitin binding compound calcofluor white. Furthermore, we show that lack of Chs4p prenylation decreases the average chain length of the chitin polymer. Prenylation of Chs4p, however, is not a factor that mediates plasma membrane association of the protein. Our results provide evidence that the prenyl moiety attached to Chs4p is a factor modulating the activity of CSIII both in vivo and in vitro.


2020 ◽  
Vol 15 (5) ◽  
pp. 1934578X2092607
Author(s):  
Biljana Nikolić ◽  
Marina Todosijević ◽  
Iris Đorđević ◽  
Jovana Stanković ◽  
Zorica S. Mitić ◽  
...  

In leaf cuticular wax of Pinus pinaster, content of nonacosan-10-ol is high (77.1% on average). n-Alkanes ranged from C18 to C35 with the most dominant C29 (24.8%). The carbon preference index (CPItotal) ranged from 3.1 to 5.6 (4.0 on average), while the average chain length (ACLtotal) ranged from 14.0 to 17.0 (14.8 on average). Long-chain n-alkanes ( n-C25-35) strongly dominated (80.1%) over middle-chain ( n-C21-24 = 18.9%) and short-chain ( n -C18-20 = 0.9%) n-alkanes.


2011 ◽  
Vol 98 (9) ◽  
pp. 719-729 ◽  
Author(s):  
Liang Wang ◽  
Michael J. Wise

Biologia ◽  
2011 ◽  
Vol 66 (3) ◽  
Author(s):  
Hideki Kajiura ◽  
Hiroki Takata ◽  
Tsunehisa Akiyama ◽  
Ryo Kakutani ◽  
Takashi Furuyashiki ◽  
...  

AbstractThis review describes a new enzymatic method for in vitro glycogen synthesis and its structure and properties. In this method, short-chain amylose is used as the substrate for branching enzymes (BE, EC 2.4.1.18). Although a kidney bean BE and Bacillus cereus BE could not synthesize high-molecular weight glucan, BEs from 6 other bacterial sources produced enzymatically synthesized glycogen (ESG). The BE from Aquifex aeolicus was the most suitable for the production of glycogen with a weight-average molecular weight (M w) of 3,000–30,000 k. The molecular weight of the ESG is controllable by changing the concentration of the substrate amylose. Furthermore, the addition of amylomaltase (AM, EC 2.4.1.25) significantly enhanced the efficiency of this process, and the yield of ESG reached approximately 65%. Typical preparations of ESG obtained by this method were subjected to structural analyses. The average chain length, interior chain length, and exterior chain length of the ESGs were 8.2–11.6, 2.0–3.3, and 4.2–7.6, respectively. Transmission electron microscopy and intrinsic viscosity measurement showed that the ESG molecules formed spherical particles. Unlike starch, the ESGs were barely degraded by pullulanase. Solutions of ESG were opalescent (milky-white and slightly bluish), and gave a reddishbrown color on the addition of iodine. These analyses revealed that ESG shares similar molecular shapes and solution properties with natural-source glycogen. Moreover, ESG had macrophage-stimulating activity and its activity depends on the molecular weight of ESG. We successfully achieved large scale production of ESG. ESG could lead to new industrial applications, such as in the food, chemical, and pharmaceutical fields.


1969 ◽  
Vol 47 (16) ◽  
pp. 3081-3084 ◽  
Author(s):  
Robert J. Fuchs ◽  
Charles W. Lutz

At low concentrations in hard water, the polyphosphates revert to orthophosphate at rates which are not predictable from data obtained at higher concentrations. A reversal in the effect of pH on reversion rate at lower concentrations appears to be due to complex formation between the polyphosphate and the hard water metal ions. A minimum in the rate of reversion of polyphosphate glasses to orthophosphate occurs at an average chain length between about 13 and 40 under the low concentration hard water conditions. Phosphate glasses having an average chain length below 30 show good storage stability but longer-chain glasses undergo a decrease in chain length under normal "dry" storage conditions, with the rate of degradation increasing with increasing chain length.


Sign in / Sign up

Export Citation Format

Share Document