Random lasing from dyed polystyrene spheres in disordered environments

2018 ◽  
Vol 30 (3) ◽  
pp. 032022 ◽  
Author(s):  
Sunita Kedia ◽  
Sucharita Sinha
Author(s):  
W. Krakow ◽  
W. C. Nixon

The scanning electron microscope (SEM) can be run at television scanning rates and used with a video tape recorder to observe dynamic specimen changes. With a conventional tungsten source, a low noise TV image is obtained with a field of view sufficient to cover the area of the specimen to be recorded. Contrast and resolution considerations have been elucidated and many changing specimens have been studied at TV rates.To extend the work on measuring the magnitude of charge and field distributions of small particles in the SEM, we have investigated their motion and electrostatic interaction at TV rates. Fig. 1 shows a time sequence of polystyrene spheres on a conducting grating surface inclined to the microscope axis. In (la) there are four particles present in the field of view, while in (lb) a fifth particle has moved into view.


Author(s):  
C. Jacobsen ◽  
J. Fu ◽  
S. Mayer ◽  
Y. Wang ◽  
S. Williams

In scanning luminescence x-ray microscopy (SLXM), a high resolution x-ray probe is used to excite visible light emission (see Figs. 1 and 2). The technique has been developed with a goal of localizing dye-tagged biochemically active sites and structures at 50 nm resolution in thick, hydrated biological specimens. Following our initial efforts, Moronne et al. have begun to develop probes based on biotinylated terbium; we report here our progress towards using microspheres for tagging.Our initial experiments with microspheres were based on commercially-available carboxyl latex spheres which emitted ~ 5 visible light photons per x-ray absorbed, and which showed good resistance to bleaching under x-ray irradiation. Other work (such as that by Guo et al.) has shown that such spheres can be used for a variety of specific labelling applications. Our first efforts have been aimed at labelling ƒ actin in Chinese hamster ovarian (CHO) cells. By using a detergent/fixative protocol to load spheres into cells with permeabilized membranes and preserved morphology, we have succeeded in using commercial dye-loaded, spreptavidin-coated 0.03μm polystyrene spheres linked to biotin phalloidon to label f actin (see Fig. 3).


2012 ◽  
Vol 101 (25) ◽  
pp. 251120 ◽  
Author(s):  
Marco Leonetti ◽  
Cefe Lopez

2021 ◽  
Vol 127 (6) ◽  
Author(s):  
R. A. Ejbarah ◽  
J. M. Jassim ◽  
S. F. Haddawi ◽  
S. M. Hamidi

Nano Letters ◽  
2021 ◽  
Author(s):  
Rodrigo Sato ◽  
Joel Henzie ◽  
Boyi Zhang ◽  
Satoshi Ishii ◽  
Shunsuke Murai ◽  
...  
Keyword(s):  

2009 ◽  
Vol 17 (9) ◽  
pp. 6975 ◽  
Author(s):  
Boris P. Bret ◽  
Nuno J. Couto ◽  
Mariana Amaro ◽  
Eduardo J. Nunes-Pereira ◽  
Michael Belsley

Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 114
Author(s):  
Sebastian Dahle ◽  
John Meuthen ◽  
René Gustus ◽  
Alexandra Prowald ◽  
Wolfgang Viöl ◽  
...  

Self-assembling films typically used for colloidal lithography have been applied to pine wood substrates to change the surface wettability. Therefore, monodisperse polystyrene (PS) spheres have been deposited onto a rough pine wood substrate via dip coating. The resulting PS sphere film resembled a polycrystalline face centered cubic (FCC)-like structure with typical domain sizes of 5–15 single spheres. This self-assembled coating was further functionalized via an O2 plasma. This plasma treatment strongly influenced the particle sizes in the outermost layer, and hydroxyl as well as carbonyl groups were introduced to the PS spheres’ surfaces, thus generating a superhydrophilic behavior.


Author(s):  
Saddam F. Haddawi ◽  
Hammad R. Humud ◽  
Sakineh Almasi Monfared ◽  
S. M. Hamidi

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 274
Author(s):  
Shih-Jyun Shen ◽  
Demei Lee ◽  
Yu-Chen Wu ◽  
Shih-Jung Liu

This paper reports the binary colloid assembly of nanospheres using spin coating techniques. Polystyrene spheres with sizes of 900 and 100 nm were assembled on top of silicon substrates utilizing a spin coater. Two different spin coating processes, namely concurrent and sequential coatings, were employed. For the concurrent spin coating, 900 and 100 nm colloidal nanospheres of latex were first mixed and then simultaneously spin coated onto the silicon substrate. On the other hand, the sequential coating process first created a monolayer of a 900 nm nanosphere array on the silicon substrate, followed by the spin coating of another layer of a 100 nm colloidal array on top of the 900 nm array. The influence of the processing parameters, including the type of surfactant, spin speed, and spin time, on the self-assembly of the binary colloidal array were explored. The empirical outcomes show that by employing the optimal processing conditions, binary colloidal arrays can be achieved by both the concurrent and sequential spin coating processes.


2020 ◽  
pp. 2000097
Author(s):  
Jingyun Hu ◽  
Meng Wang ◽  
Fawei Tang ◽  
Miao Liu ◽  
Yunyun Mu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document