Densification behavior, microstructure evolution, and tensile properties of selective laser melting additive manufactured TiB2/AlSi10Mg composite

2020 ◽  
Vol 32 (2) ◽  
pp. 022007
Author(s):  
Yanan Meng ◽  
Zhengyu Yu ◽  
Peng Rong ◽  
Guangjun Li
2012 ◽  
Vol 60 (9) ◽  
pp. 3849-3860 ◽  
Author(s):  
Dongdong Gu ◽  
Yves-Christian Hagedorn ◽  
Wilhelm Meiners ◽  
Guangbin Meng ◽  
Rui João Santos Batista ◽  
...  

Author(s):  
Jonas Nitzler ◽  
Christoph Meier ◽  
Kei W. Müller ◽  
Wolfgang A. Wall ◽  
N. E. Hodge

AbstractThe elasto-plastic material behavior, material strength and failure modes of metals fabricated by additive manufacturing technologies are significantly determined by the underlying process-specific microstructure evolution. In this work a novel physics-based and data-supported phenomenological microstructure model for Ti-6Al-4V is proposed that is suitable for the part-scale simulation of laser powder bed fusion processes. The model predicts spatially homogenized phase fractions of the most relevant microstructural species, namely the stable $$\beta $$ β -phase, the stable $$\alpha _{\text {s}}$$ α s -phase as well as the metastable Martensite $$\alpha _{\text {m}}$$ α m -phase, in a physically consistent manner. In particular, the modeled microstructure evolution, in form of diffusion-based and non-diffusional transformations, is a pure consequence of energy and mobility competitions among the different species, without the need for heuristic transformation criteria as often applied in existing models. The mathematically consistent formulation of the evolution equations in rate form renders the model suitable for the practically relevant scenario of temperature- or time-dependent diffusion coefficients, arbitrary temperature profiles, and multiple coexisting phases. Due to its physically motivated foundation, the proposed model requires only a minimal number of free parameters, which are determined in an inverse identification process considering a broad experimental data basis in form of time-temperature transformation diagrams. Subsequently, the predictive ability of the model is demonstrated by means of continuous cooling transformation diagrams, showing that experimentally observed characteristics such as critical cooling rates emerge naturally from the proposed microstructure model, instead of being enforced as heuristic transformation criteria. Eventually, the proposed model is exploited to predict the microstructure evolution for a realistic selective laser melting application scenario and for the cooling/quenching process of a Ti-6Al-4V cube of practically relevant size. Numerical results confirm experimental observations that Martensite is the dominating microstructure species in regimes of high cooling rates, e.g., due to highly localized heat sources or in near-surface domains, while a proper manipulation of the temperature field, e.g., by preheating the base-plate in selective laser melting, can suppress the formation of this metastable phase.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 205
Author(s):  
Ruochen Ding ◽  
Jun Yao ◽  
Baorui Du ◽  
Kailun Li ◽  
Tao Li ◽  
...  

In recent years, selective laser melting (SLM) has been widely used in aerospace, automobile, biomedicine and other fields. However, there still remain many challenges to obtain consistent parts at the different positions on the base plate, which could be harmful to the industrial mass-production. In SLM process, the process by-products that flow with the shielding gas may influence the microstructure and tensile properties of the parts placed on different positions of the base plate. In this study, the velocity field of the shielding gas with different shielding gas volume flows was simulated. The tensile properties of the samples fabricated with different shielding gas volume flow were experimentally studied. The results show that the shielding gas volume flow has a strong influence on the sample consistency, and proper increase in shielding gas volume flows can be beneficial to consistency and tensile strength.


Sign in / Sign up

Export Citation Format

Share Document