scholarly journals Influence of laser-directed energy deposition process parameters and thermal post-treatments on Nb-rich secondary phases in single-track Alloy 718 specimens

2021 ◽  
Vol 33 (2) ◽  
pp. 022024
Author(s):  
Suhas Sreekanth ◽  
Kjell Hurtig ◽  
Shrikant Joshi ◽  
Joel Andersson
2020 ◽  
Vol 26 ◽  
pp. 1108-1112 ◽  
Author(s):  
B.N. Manjunath ◽  
A.R. Vinod ◽  
K. Abhinav ◽  
S.K. Verma ◽  
M. Ravi Sankar

2022 ◽  
Vol 34 (1) ◽  
pp. 012018
Author(s):  
Cory D. Jamieson ◽  
Marissa C. Brennan ◽  
Todd J. Spurgeon ◽  
Stephen W. Brown ◽  
Jayme S. Keist ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1280
Author(s):  
Pedro Ramiro ◽  
Mikel Ortiz ◽  
Amaia Alberdi ◽  
Aitzol Lamikiz

In this study, a manufacturing strategy, and guidelines for inclined and multilayered structures of variable thickness are presented, which are based on the results of an own-developed geometrical model that obtains both the coating thickness and dilution. This model is developed for the powder-fed directed energy deposition process (DED) and it only uses the DED single-track cladding characteristics (height, width, area, and dilution depth), the overlap percentage, and the laser head tilting-angle as inputs. As outputs, it calculates both the cladding geometry and the dilution area of the coating. This model for the Ni-based alloy 718 was improved, based on previous studies of the single clad working both vertically and at an inclined angle, adding the equations of the single clad characteristics with respect to the main process parameters. The strategy proposed in this paper for multilayered cladding consisted of both adding an extra clad at the edges of the layer and using a variable value of the overlap percentage between clads for geometric adaptations. With this strategy, the material deposition is more accurate than otherwise, and it shows stable growth. Manufacturing a multilayered wall of wider thicknesses at higher heights was utilized to validate the strategy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jong-Sup Lim ◽  
Won-Jung Oh ◽  
Choon-Man Lee ◽  
Dong-Hyeon Kim

AbstractIn the directed energy deposition (DED) process, significant empirical testing is required to select the optimal process parameters. In this study, single-track experiments were conducted using laser power and scan speed as parameters in the DED process for titanium alloys. The results of the experiment confirmed that the deposited surface color appeared differently depending on the process parameters. Cross-sectional view, hardness, microstructure, and component analyses were performed according to the color data, and a color suitable for additive manufacturing was selected. Random forest (RF) and support vector machine multi-classification models were constructed by collecting surface color data from a titanium alloy deposited on a single track; the accuracies of the multi-classification models were compared. Validation experiments were performed under conditions that each model predicted differently. According to the results of the validation experiments, the RF multi-classification model was the most accurate.


Author(s):  
Daniel Andres Rojas Perilla ◽  
Johan Grass Nuñez ◽  
German Alberto Barragan De Los Rios ◽  
Fabio Edson Mariani ◽  
Reginaldo Teixeira Coelho

Author(s):  
Gabriele Piscopo ◽  
Alessandro Salmi ◽  
Eleonora Atzeni

AbstractThe production of large components is one of the most powerful applications of laser powder-directed energy deposition (LP-DED) processes. High productivity could be achieved, when focusing on industrial applications, by selecting the proper process parameters. However, it is of crucial importance to understand the strategies that are necessary to increase productivity while maintaining the overall part quality and minimizing the need for post-processing. In this paper, an analysis of the dimensional deviations, surface roughness and subsurface residual stresses of samples produced by LP-DED is described as a function of the applied energy input. The aim of this work is to analyze the effects of high-productivity process parameters on the surface quality and the mechanical characteristics of the samples. The obtained results show that the analyzed process parameters affect the dimensional deviations and the residual stresses, but have a very little influence on surface roughness, which is instead dominated by the presence of unmelted particles.


2019 ◽  
Vol 62 (4) ◽  
pp. 213-217 ◽  
Author(s):  
Abdollah Saboori ◽  
Sara Biamino ◽  
Mariangela Lombardi ◽  
Simona Tusacciu ◽  
Mattia Busatto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document