Optimisation of process parameters for deposition of colmonoy using directed energy deposition process

2020 ◽  
Vol 26 ◽  
pp. 1108-1112 ◽  
Author(s):  
B.N. Manjunath ◽  
A.R. Vinod ◽  
K. Abhinav ◽  
S.K. Verma ◽  
M. Ravi Sankar
Author(s):  
Daniel Andres Rojas Perilla ◽  
Johan Grass Nuñez ◽  
German Alberto Barragan De Los Rios ◽  
Fabio Edson Mariani ◽  
Reginaldo Teixeira Coelho

Author(s):  
Gabriele Piscopo ◽  
Alessandro Salmi ◽  
Eleonora Atzeni

AbstractThe production of large components is one of the most powerful applications of laser powder-directed energy deposition (LP-DED) processes. High productivity could be achieved, when focusing on industrial applications, by selecting the proper process parameters. However, it is of crucial importance to understand the strategies that are necessary to increase productivity while maintaining the overall part quality and minimizing the need for post-processing. In this paper, an analysis of the dimensional deviations, surface roughness and subsurface residual stresses of samples produced by LP-DED is described as a function of the applied energy input. The aim of this work is to analyze the effects of high-productivity process parameters on the surface quality and the mechanical characteristics of the samples. The obtained results show that the analyzed process parameters affect the dimensional deviations and the residual stresses, but have a very little influence on surface roughness, which is instead dominated by the presence of unmelted particles.


2019 ◽  
Vol 62 (4) ◽  
pp. 213-217 ◽  
Author(s):  
Abdollah Saboori ◽  
Sara Biamino ◽  
Mariangela Lombardi ◽  
Simona Tusacciu ◽  
Mattia Busatto ◽  
...  

Author(s):  
Jianyi Li ◽  
Qian Wang ◽  
Panagiotis (Pan) Michaleris

In modeling and simulating thermo-mechanical behavior in a directed energy deposition process, it often needs to compute the temperature field evolved in the deposition process since thermal history in the deposition process would affect part geometry as well as microstructure, material properties, residual stress, and distortion of the final part. This paper presents an analytical computation of temperature field evolved in a directed energy deposition process, using a single-bead wall as an illustrating example. Essentially, the temperature field is computed by superposition of the temperature fields generated by the laser source as well as induced from each of the past beads, where the transient solution to a moving heat source in a semi-infinite body is applied to describe each individual temperature field. For better characterization of cooling effect (temperature contribution from a past bead), a pair of positive and negative virtual heat sources is assigned for each past bead. In addition, mirrored heat sources through a reflexion technique are introduced to define the adiabatic boundaries of the part being built and to account for the substrate thickness. In the end, three depositions of Ti-6AL-4V walls with different geometries and inter-layer dwell times on an Optomec® laser engineered net shaping (LENS) system are used to validate the proposed analytical computation, where predicted temperatures at several locations of the depositions show reasonable agreement with the in situ temperature measurements, with the average prediction error less than 15%. The proposed analytical computation for temperature field in directed energy deposition could be potentially used in model-based feedback control for thermal history in the deposition, which could affect microstructure evolution and other properties of the final part.


Procedia CIRP ◽  
2020 ◽  
Vol 88 ◽  
pp. 393-398
Author(s):  
Gabriele Piscopo ◽  
Eleonora Atzeni ◽  
Alessandro Salmi ◽  
Luca Iuliano ◽  
Andrea Gatto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document