scholarly journals Improvement of Pitting Corrosion Resistance of Type 430 Stainless Steel by Electrochemical Treatments in a Concentrated Nitric Acid

2014 ◽  
Vol 54 (1) ◽  
pp. 199-205 ◽  
Author(s):  
Sri Hastuty ◽  
Eiji Tada ◽  
Atsushi Nishikata ◽  
Yusuke Tsutsumi ◽  
Takao Hanawa
2009 ◽  
Vol 289-292 ◽  
pp. 501-508 ◽  
Author(s):  
C.M. Abreu ◽  
M.J. Cristóbal ◽  
P. Merino ◽  
G. Pena ◽  
M.C. Pérez

Research on the effect of ion implantation on the corrosion behaviour of metals has been carried out for years, but some difficulties arise in the comparison of the obtained results due to variations in experimental conditions (alloys, surface preparation, doses, experimental techniques...). This work tries to overcome those differences, presenting the effect of several elements (Ce+, N+, Cr+ and Cr+ N+) implanted in similar conditions on the pitting corrosion resistance of AISI 430 stainless steel. Potentiodynamic measurements in 1M NaCl demonstrate the beneficial effect of all the implanted elements, showing that Ce+ is the less efficient ion, while Cr+ N+ co-implantation gives the best results in terms of localized attack resistance. Pitting morphology is explained in terms of the XPS and GIXRD data that allow chemical and structural characterization of the implanted layer. Those results help to enlighten the protection mechanisms involved in the considered implantations.


Alloy Digest ◽  
2000 ◽  
Vol 49 (5) ◽  

Abstract Nirosta 4429 is a low-carbon, high-nitrogen version of type 316 stainless steel. The low carbon imparts intergranular corrosion resistance while the nitrogen imparts both higher strength and some increased pitting corrosion resistance. It is recommended for use as welded parts that need not or cannot be annealed after welding. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-787. Producer or source: ThyssenKrupp Nirosta.


2010 ◽  
Vol 658 ◽  
pp. 380-383 ◽  
Author(s):  
Ying Han ◽  
De Ning Zou ◽  
Wei Zhang ◽  
Jun Hui Yu ◽  
Yuan Yuan Qiao

Specimens of 2507 super-duplex stainless steel aging at 850°C for 5 min, 15 min and 60 min were investigated to evaluate the pitting corrosion resistance in 3.5% NaCl solution at 30°C and 50°C. The results are correlated with the microstructures obtained with different aging time. The precipitation of σ phase remarkably decreases the pitting corrosion resistance of the steel and the specimen aged for 60 min presents the lowest pitting potential at both 30°C and 50°C. With increasing the ambient temperature from 30°C to 50°C, the pitting potential exhibits a reduction tendency, while this tendency is less obviously in enhancing the ambient temperature than in extending the isothermal aging duration from 5 to 60 min. SEM analysis shows that the surrounding regions of σ phase are the preferable sites for the formation of corrosion pits which grew up subsequently. This may be attributed to the lower content of corrosion resistance elements in these regions formatted with σ phase precipitation.


Sign in / Sign up

Export Citation Format

Share Document