scholarly journals Cavitation Erosion and Solid Particle Erosion Behaviour of a Nitrogen Alloyed Austenitic Stainless Steel

2015 ◽  
Vol 55 (5) ◽  
pp. 1123-1130 ◽  
Author(s):  
Ashish Selokar ◽  
Ujjwal Prakash ◽  
Desh Bandhu Goel ◽  
Balabhadrapatruni Venkata Manoj Kumar
2013 ◽  
Vol 7 (4) ◽  
pp. 201-210 ◽  
Author(s):  
E. Avcu ◽  
S. Fidan ◽  
Y. Yıldıran ◽  
T. Sınmazçelik

Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 921
Author(s):  
Alicja Krella

Due to the increasing maintenance costs of hydraulic machines related to the damages caused by cavitation erosion and/or erosion of solid particles, as well as in tribological connections, surface protection of these components is very important. Up to now, numerous investigations of resistance of coatings, mainly nitride coatings, such as CrN, TiN, TiCN, (Ti,Cr)N coatings and multilayer TiN/Ti, ZrN/CrN and TN/(Ti,Al)N coatings, produced by physical vapor deposition (PVD) method using different techniques of deposition, such as magnetron sputtering, arc evaporation or ion plating, to cavitation erosion, solid particle erosion and wear have been made. The results of these investigations, degradation processes and main test devices used are presented in this paper. An effect of deposition of mono- and multi-layer PVD coatings on duration of incubation period, cumulative weight loss and erosion rate, as well as on wear rate and coefficient of friction in tribological tests is discussed. It is shown that PVD coating does not always provide extended incubation time and/or improved resistance to mentioned types of damage. The influence of structure, hardness, residence to plastic deformation and stresses in the coatings on erosion and wear resistance is discussed. In the case of cavitation erosion and solid particle erosion, a limit value of the ratio of hardness (H) to Young’s modulus (E) exists at which the best resistance is gained. In the case of tribological tests, the higher the H/E ratio and the lower the coefficient of friction, the lower the wear rate, but there are also many exceptions.


Author(s):  
Risa Okita ◽  
Yongli Zhang ◽  
Brenton S. McLaury ◽  
Siamack A. Shirazi ◽  
Edmund F. Rybicki

Although solid particle erosion has been examined extensively in the literature for dry gas and vacuum conditions, several parameters affecting solid particle erosion in liquids are not fully understood and need additional investigation. In this investigation, erosion ratios of two materials have been measured in gas and also in liquids with various liquid viscosities and abrasive particle sizes and shapes. Solid particle erosion ratios for aluminum 6061-T6 and 316 stainless steel have been measured for a direct impingement flow condition using a submerged jet geometry, with liquid viscosities of 1, 10, 25, and 50 cP. Sharp and rounded sand particles with average sizes of 20, 150, and 300 μm, as well as spherical glass beads with average sizes of 50, 150 and 350 μm, were used as abrasives. To make comparisons of erosion in gas and liquids, erosion ratios of the same materials in air were measured for sands and glass beads with the particle sizes of 150 and 300 μm. Based on these erosion measurements in gas and liquids, several important observations were made: (1) Particle size did not affect the erosion magnitude for gas while it did for viscous liquids. (2) Although aluminum and stainless steel have significant differences in hardness and material characteristics, the mass losses of these materials were nearly the same for the same mass of impacting particles in both liquid and gas. (3) The most important observation from these erosion tests is that the shape of the particles did not significantly affect the trend of erosion results as liquid viscosity varied. This has an important implication on particle trajectory modeling where it is generally assumed that particles are spherical in shape. Additionally, the particle velocities measured with the Laser Doppler Velocimetry (LDV) near the wall were incorporated into the erosion equations to predict the erosion ratio in liquid for each test condition. The calculated erosion ratios are compared to the measured erosion ratios for the liquid case. The calculated results agree with the trend of the experimental data.


2020 ◽  
Vol 277 ◽  
pp. 128381
Author(s):  
A. Ruiz-Rios ◽  
C. López-García ◽  
I. Campos-Silva

Wear ◽  
2020 ◽  
Vol 462-463 ◽  
pp. 203520
Author(s):  
Digvijay G. Bhosale ◽  
T. Ram Prabhu ◽  
Walmik S. Rathod ◽  
Manik A. Patil ◽  
Sanjay W. Rukhande

2014 ◽  
Vol 1043 ◽  
pp. 45-49 ◽  
Author(s):  
Ashish Selokar ◽  
Ravi Kant ◽  
D.B. Goel ◽  
U. Prakash

In the present work, comparison of solid particle erosive behaviour of 13/4 steel and Nitrogen alloyed austenitic stainless steel (23/8N steel) have been studied using air jet erosion testing. Air jet erosion testing has been performed at various angles for as received samples at 31 m/s velocity and a discharge rate of 3 gm per minute by alumina particles with angular shape and 53-63μm size. Microstructure, eroded surface characteristics, mechanical properties and erosion rate are characterized by using scanning electron microscope, hardness and tensile testing. 23/8N steel shows good hardness coupled with high tensile toughness and work hardening ability, which leads to improved erosion resistance. The surface morphology analysis of the worn out surfaces, cumulative weight loss measurements and steady state of erosion rate results were used to understand the effect of nitrogen on the degradation mechanisms. The results show that 23/8N steel exhibits excellent resistance to erosion in comparison to13/4 steel.


Sign in / Sign up

Export Citation Format

Share Document