scholarly journals Hot Cracking of Low Alloy Steels in Simulated Continuous Casting-Direct Rolling Process

1988 ◽  
Vol 28 (12) ◽  
pp. 1021-1027 ◽  
Author(s):  
Yasuhiro MAEHARA ◽  
Ken NAKAI ◽  
Kunio YASUMOTO ◽  
Tateshi MISHIMA
1987 ◽  
Vol 73 (7) ◽  
pp. 876-883
Author(s):  
Yasuhiro MAEHARA ◽  
Ken NAKAI ◽  
Kunio YASUMOTO ◽  
Tateshi MISHIMA

2009 ◽  
Vol 419-420 ◽  
pp. 349-352
Author(s):  
Pongsak Chaengkham ◽  
Panya Srichandr

Manufacturing of the future has to be more flexible and versatile in order to meet the ever changing needs of the customer. Most continuous casting machines today are rather inflexible in that they are designed to cast specific types of alloys and with limited size ranges, thus suitable for the mass production paradigm. This paper reports the design and development of a modular horizontal continuous casting machine (HCCM). The aim is to have a machine that can continuously cast a variety of ferrous alloys from carbon steels, low alloy steels, stainless steels to cast irons, and with ranges of cross-sectional areas. The modular design approach and quick changing techniques are employed as the key design concept. The construction of the first prototype of the machine is completed and several field trials have been conducted. The results are promising. For carbon and low alloy steel billets, the overall structures and surface quality are good although the amount of porosities is rather large. The overall quality of stainless steel billets is better than that of carbon and low alloy steels. Adapting and setting up the machine for casting different alloys and/or different billet sizes require a little time, no more than 20 minutes.


2010 ◽  
Vol 168-170 ◽  
pp. 827-831
Author(s):  
Yun Li Fu ◽  
Kai Ming Wu

The macro structures, microstructures, textures and precipitates in non-oriented electrical steels were studied by means of optical microscopy, scanning electron microscopy (SEM), electron back scattering dispersion (EBSD) and transmission electron microscopy (TEM) in the specimens produced by conventional continuous casting process and thin slab continuous casting and direct rolling process. Results showed the macro structures in as-cast slabs and the microstructures in as-rolled strips were more fine-grained and uniform with regard to compact strip production (CSP) process, compared with that in conventional process. No obvious texture was observed in hot rolled strips produced by CSP process.


1988 ◽  
Vol 74 (7) ◽  
pp. 1509-1516
Author(s):  
Kichi NAKAZAWA ◽  
Osamu AKISUE ◽  
Kazuhiko FUDABA ◽  
Masahiko ODA

Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


Sign in / Sign up

Export Citation Format

Share Document