Effect of Deep Drawing and Subsequent Aging Condition on Delayed Cracking of Stainless Steel

1982 ◽  
Vol 68 (6) ◽  
pp. 649-657 ◽  
Author(s):  
Kiyohiko NOHARA ◽  
Kenji WATANABE ◽  
Yutaka ONO ◽  
Nobuo OHASHI
Alloy Digest ◽  
2002 ◽  
Vol 51 (1) ◽  

Abstract Allegheny Ludlum Type 305 (S30500) stainless steel is used for applications requiring a low rate of work hardening during severe cold-forming operations such as deep drawing. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as heat treating and joining. Filing Code: SS-840. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
1999 ◽  
Vol 48 (9) ◽  

Abstract ALZ 305 is an austenitic stainless steel with excellent formability and good corrosion resistance, toughness, and mechanical properties. The higher amount of nickel in this grade enables high deep-drawing deformation without intermediate annealing. This datasheet provides information on composition, physical properties, and elasticity. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-762. Producer or source: ALZ nv.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Jingwei Zhao ◽  
Tao Wang ◽  
Fanghui Jia ◽  
Zhou Li ◽  
Cunlong Zhou ◽  
...  

AbstractIn the present work, austenitic stainless steel (ASS) 304 foils with a thickness of 50 µm were first annealed at temperatures ranging from 700 to 1100 ℃ for 1 h to obtain different microstructural characteristics. Then the effects of microstructural characteristics on the formability of ASS 304 foils and the quality of drawn cups using micro deep drawing (MDD) were studied, and the mechanism involved was discussed. The results show that the as-received ASS 304 foil has a poor formability and cannot be used to form a cup using MDD. Serious wrinkling problem occurs on the drawn cup, and the height profile distribution on the mouth and the symmetry of the drawn cup is quite non-uniform when the annealing temperature is 700 ℃. At annealing temperatures of 900 and 950 ℃, the drawn cups are both characterized with very few wrinkles, and the distribution of height profile, symmetry and mouth thickness are uniform on the mouths of the drawn cups. The wrinkling becomes increasingly significant with a further increase of annealing temperature from 950 to 1100 ℃. The optimal annealing temperatures obtained in this study are 900 and 950 ℃ for reducing the generation of wrinkling, and therefore improving the quality of drawn cups. With non-optimized microstructure, the distribution of the compressive stress in the circumferential direction of the drawn foils becomes inhomogeneous, which is thought to be the cause of the occurrence of localized deformation till wrinkling during MDD.


2021 ◽  
Vol 2020 (1) ◽  
pp. 012040
Author(s):  
S N Yuan ◽  
H B Xie ◽  
F H Jia ◽  
H Wu ◽  
D Pan ◽  
...  

Author(s):  
Yian Wang ◽  
Guoshan Xie ◽  
Libin Song ◽  
Meng He ◽  
Fakun Zhuang ◽  
...  

A cracking incident of a 304 stainless steel elbow serving in the synthesis gas purification device occurred during running. In order to get an understanding of the failure mechanism, a failure analysis was performed on the cracked elbow in this paper. The chemical composition, mechanical properties of strength, toughness and hardness, hydrogen content were identified and determined. The metallographical structure was observed and analyzed by optical microscope (OM) and X-Ray Diffraction (XRD), while the fracture morphology was observed by scanning electron microscope (SEM). The results showed that the chemical composition of the cracked elbow meet the requirements for China standard, while comparing with GB/T 14976-2012 standards, the strength and elongation of the leaked elbow are higher and lower respectively, and the hardness of the leaked elbow was higher than quality certificate documents that of HB ⩽ 187. Large quantities of martensite and δ-ferrite were observed in elbow, which indicated that the elbow was not well solid solution heat treated required by specification (1050°C,30min). The fracture morphology presents typical brittle fracture. The hydrogen content of cracked elbow was significant higher than that of other 304 stainless steel elbow serving in the environment without hydrogen. It is acknowledged that martensite showed higher sensitivity of hydrogen embrittlement compared with austenite. Furthermore, the operating temperature of cracked elbow was in the range of high hydrogen embrittlement sensitivity. Depending on the metallographical structure, strength, service environment, hydrogen content and fracture morphology, it can be concluded that hydrogen induced delayed cracking was the dominant mechanism of the failure.


Sign in / Sign up

Export Citation Format

Share Document