scholarly journals Experimental Investigation on Micro Deep Drawing of Stainless Steel Foils with Different Microstructural Characteristics

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Jingwei Zhao ◽  
Tao Wang ◽  
Fanghui Jia ◽  
Zhou Li ◽  
Cunlong Zhou ◽  
...  

AbstractIn the present work, austenitic stainless steel (ASS) 304 foils with a thickness of 50 µm were first annealed at temperatures ranging from 700 to 1100 ℃ for 1 h to obtain different microstructural characteristics. Then the effects of microstructural characteristics on the formability of ASS 304 foils and the quality of drawn cups using micro deep drawing (MDD) were studied, and the mechanism involved was discussed. The results show that the as-received ASS 304 foil has a poor formability and cannot be used to form a cup using MDD. Serious wrinkling problem occurs on the drawn cup, and the height profile distribution on the mouth and the symmetry of the drawn cup is quite non-uniform when the annealing temperature is 700 ℃. At annealing temperatures of 900 and 950 ℃, the drawn cups are both characterized with very few wrinkles, and the distribution of height profile, symmetry and mouth thickness are uniform on the mouths of the drawn cups. The wrinkling becomes increasingly significant with a further increase of annealing temperature from 950 to 1100 ℃. The optimal annealing temperatures obtained in this study are 900 and 950 ℃ for reducing the generation of wrinkling, and therefore improving the quality of drawn cups. With non-optimized microstructure, the distribution of the compressive stress in the circumferential direction of the drawn foils becomes inhomogeneous, which is thought to be the cause of the occurrence of localized deformation till wrinkling during MDD.

2021 ◽  
Vol 2020 (1) ◽  
pp. 012040
Author(s):  
S N Yuan ◽  
H B Xie ◽  
F H Jia ◽  
H Wu ◽  
D Pan ◽  
...  

2013 ◽  
Vol 15 (2) ◽  
pp. 298-305 ◽  
Author(s):  
Jenn-Terng Gau ◽  
Sujith Teegala ◽  
Kun-Min Huang ◽  
Tun-Jen Hsiao ◽  
Bor-Tsuen Lin

Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 470
Author(s):  
Xiaolu Yuan ◽  
Jiangwei Liu ◽  
Jinlong Liu ◽  
Junjun Wei ◽  
Bo Da ◽  
...  

Ohmic contact with high thermal stability is essential to promote hydrogen-terminated diamond (H-diamond) electronic devices for high-temperature applications. Here, the ohmic contact characteristics of Ni/H-diamond at annealing temperatures up to 900 °C are investigated. The measured current–voltage curves and deduced specific contact resistance (ρC) are used to evaluate the quality of the contact properties. Schottky contacts are formed for the as-received and 300 °C-annealed Ni/H-diamonds. When the annealing temperature is increased to 500 °C, the ohmic contact properties are formed with the ρC of 1.5 × 10−3 Ω·cm2 for the Ni/H-diamond. As the annealing temperature rises to 900 °C, the ρC is determined to be as low as 6.0 × 10−5 Ω·cm2. It is believed that the formation of Ni-related carbides at the Ni/H-diamond interface promotes the decrease in ρC. The Ni metal is extremely promising to be used as the ohmic contact electrode for the H-diamond-based electronic devices at temperature up to 900 °C.


2021 ◽  
Author(s):  
Di Pan ◽  
Guangqing Zhang ◽  
Fanghui Jia ◽  
Hamidreza Kamali ◽  
Yao Lu ◽  
...  

Abstract Micro deep drawing is a process to manufacture the thin walled, hollow, box or cup like products at micro scale. Lubricant can affect the products’ quality in micro deep drawing at micro scale due to the decrease of coefficient of friction between the material and tools, it is crucial to enhance the forming efficiency. In this study, 40 µm thickness stainless steel 301 (SUS301) was annealed at 980 ℃ for 2 min under protection of argon gas ambient, and this stainless steel was selected as the specimen material. The micro deep drawing was conducted on a micro press machine under dry and 4% TiO2 nanoparticle lubrication conditions with different forming velocities. The experimental results showed that the micro cup’s profile is affected by changing the forming velocity under the dry and nanoparticle lubrication conditions. Under the dry condition, the surface became rough with the increase of the forming velocity, and then the micro forming efficiency under application of nanoparticle lubricant increases with a rise of drawing velocity.


2021 ◽  
Author(s):  
Di Pan ◽  
Guangqing Zhang ◽  
Haibo Xie ◽  
Fanghui Jia ◽  
Hamidreza Kamali ◽  
...  

Abstract Micro deep drawing is a promising manufacturing method to produce the hollow, thin walled, cup or box like products at micro scale. Forming velocity can affect the products’ quality significantly due to the size effect, and this effect can be various with different thickness material. In this study, 30, 40, and 50 µm thickness stainless steels were annealed at 950 °C for 2 min under protection of argon gas ambient respectively. These different thickness steels were utilized in the micro deep drawing with different forming velocities. The experimental results show that, the profile accuracy and surface quality of the micro product are affected by changing the forming velocity with different thickness blanks. The micro cup has a less indentation area at the bottom and becomes rounder and more symmetrical with a thicker blank. Besides, the wrinkling phenomenon turns distinct with a thinner blank, and the earing becomes more significantly when increasing the drawing velocity or decreasing the blank thickness. When the drawing velocity or blank thickness increases, the surface of the micro cup becomes smooth and even. The experimental results are in good agreement with the simulation results, which confirms the developed finite element simulation model is applicable.


2015 ◽  
Vol 661 ◽  
pp. 77-82
Author(s):  
Chao Cheng Chang ◽  
Han Sheng Chen

The study investigated the effect of grain size on the micro deep drawing of SUS304 stainless steel squares. Three stainless steel sheets with different thicknesses of 0.05 mm, 0.1 mm and 0.2 mm were treated by annealing processes at 1100 °C in which the holding times were varied in order to adjust the grain size. The sheets were used in the micro deep drawing processes for producing the square cups with 3 mm side length and 1.8 mm height. According to the design rules from references, the dimensions of the blank were determined to reduce the variation on the rim height of the square cup. The results showed that two peak values appeared on the load curves and the as-received sheet with the smallest grain size led to the largest load. Moreover, the cases of the as-received sheet with smaller grains had smoother surface textures than those of the annealed sheets with larger grains.


2011 ◽  
Vol 199-200 ◽  
pp. 1901-1905
Author(s):  
Li Cheng Huang ◽  
Xiao Ting Xiao ◽  
Li Guang Tan ◽  
Guo Liang Li

To satisfy the local forming need of sheet-metal part, numerical simulation of SUS304 stainless steel deep-drawing with trilateral constrained slot were carried out by employing the analytical software ETA/dynaform5.5. The influence of different friction coefficient and holder force on the forming quality was analyzed by taking the inflow volume while parts forming 50mm as standard. The results show that the effect of trilateral constraint on the uneven flow and deformation of flange. And some measures were illustrated to improve the quality of some of these parts.


2018 ◽  
Vol 190 ◽  
pp. 15001 ◽  
Author(s):  
Julien Kovac ◽  
Lukas Heinrich ◽  
Bernd Koehler ◽  
Andreas Mehner ◽  
Brigitte Clausen ◽  
...  

Al-Sc-Zr alloys are interesting for the production of high strength micro components by micro deep drawing. These alloys show a good hardenability due to the formation of nanometer-scale spheroidal Al3(Sc, Zr) precipitates, which are highly coherent with the aluminum matrix. However, the formation of these precipitates in Al-Sc-Zr foils fabricated by conventional metallurgical methods dramatically reduces their ductility and drawability. In this work, magnetron sputtering was used to produce Al-Sc-Zr foils and Al-Sc-Zr / stainless steel bimetallic foils which are nearly free of these precipitates. Tensile tests were carried out to measure and compare the mechanical properties of monometallic Al-Sc-Zr foils and bimetallic Al-Sc-Zr / stainless steel foils deposited with varying plasma target powers and containing different volume fractions (layer thickness) of Al-Sc-Zr. Micro deep drawing was used to determine the drawability of selected monometallic and bimetallic foils. The results show that the density of monometallic Al-Sc-Zr foils can be improved significantly by increasing the DC target power and by using the high power impulse magnetron sputtering (HiPIMS) technology, resulting in foils with higher ductility. Bimetallic foils achieved higher strength and ductility than monometallic Al-Sc-Zr foils. Their mechanical properties vary with the target power and the volume fraction (thickness) of Al-Sc-Zr. The limit drawing ratio of HiPIMS deposited monometallic foil was 1.7 or 1.8 depending on the side of the foil facing the die, whereas a limit drawing ratio of 1.9 was observed for bimetallic foils.


Sign in / Sign up

Export Citation Format

Share Document