scholarly journals Influences of Heating and Coiling Temperatures on Recrystallization during Hot-rolling Process in Ti Added High-purity Ferritic Stainless Steel

2003 ◽  
Vol 89 (5) ◽  
pp. 536-543 ◽  
Author(s):  
Ken KIMURA ◽  
Masayuki ABE ◽  
Masayuki TENDOU ◽  
Takehide SENUMA
2012 ◽  
Vol 535-537 ◽  
pp. 738-741 ◽  
Author(s):  
Jing Liu ◽  
Ke Zhang ◽  
Jing Tao Han

High boron alloyed stainless steel(HBASS) with different Ti content were fabricated by vacuum induction furnace and their microstructure and boride phase were analyzed. The boride phase of HBASS do not contain Ti element is mainly (Fe,Cr)2B phase with slender rod-shape. After adding Ti into steel, because Ti and B preferentially combines into TiB2 phase with petals or small block shape which can stop the formation of hard and brittle (Fe,Cr)2B, so the number of (Fe,Cr)2B phase is reduced. And after adding Ti, many crisscross cracks appeared in internal large (Fe,Cr)2B phase, which will be effective to break into small pieces of boride to improve steel plasticity and shielding thermal neutron performance during hot rolling process.


1980 ◽  
Vol 66 (6) ◽  
pp. 657-666 ◽  
Author(s):  
Yasuhiro NAKAGAWA ◽  
Tetsu SAKAMOTO ◽  
Isamu YAMAUCHI ◽  
Taketomo YAMAZAKI ◽  
Manabu UENO

2014 ◽  
Vol 852 ◽  
pp. 178-182
Author(s):  
Shuo Li ◽  
Di Tang ◽  
Hui Bin Wu ◽  
Ji Guang Xiong

The 304 austenite stainless steel and low carbon steel clad plate was fabricated by casting and hot rolling process. The mechanical properties and interface shear strength of clad plates with different thickness after rolling were investigated in detail. The microstructure characteristics of the clad interface were observed by SEM (Scanning Electron Microscope). The phases and chemical composition were analyzed by XRD (X-ray diffraction) and EDS (energy dispersive spectroscopy). Based on the results, the mechanical properties and interface shear strengths meet the requirements of national standards. No visible cracks were observed in the clad interface after bending test. Cr3C2precipitates, Fe3O4oxides and Fe-Cr intermetallic compound were distributed around the interface of clad plate after casting, but a good metallurgical bonding was achieved after hot-rolling.


2019 ◽  
Vol 949 ◽  
pp. 93-100
Author(s):  
Murodjon Turdimatov ◽  
Alexander Nam ◽  
Rudolf Kawalla ◽  
Ulrich Prahl

The understanding of the softening behaviour during the hot rolling process is required to optimize the hot rolling schedule. Therefore, the microstructural evolution in the hot rolling of austenitic stainless steel was simulated. In this work, kinetics of grain growth was investigated by means of compression tests using the Gleeble HDS V40 and described by appropriate kinetic equations based on the obtained experimental results. Moreover, numerical simulation was performed using the Simufact.forming software. The results of the numerical simulation were further validated by experimental data, which were obtained from the labour continuous hot rolling of the austenitic stainless steel.


2010 ◽  
Vol 3 (1) ◽  
pp. 65-71
Author(s):  
Armindo Guerrero ◽  
Javier Belzunce ◽  
Covadonga Betegon ◽  
Julio Jorge ◽  
Francisco J. Vigil

Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 569
Author(s):  
Ana Claudia González-Castillo ◽  
José de Jesús Cruz-Rivera ◽  
Mitsuo Osvaldo Ramos-Azpeitia ◽  
Pedro Garnica-González ◽  
Carlos Gamaliel Garay-Reyes ◽  
...  

Computational simulation has become more important in the design of thermomechanical processing since it allows the optimization of associated parameters such as temperature, stresses, strains and phase transformations. This work presents the results of the three-dimensional Finite Element Method (FEM) simulation of the hot rolling process of a medium Mn steel using DEFORM-3D software. Temperature and effective strain distribution in the surface and center of the sheet were analyzed for different rolling passes; also the change in damage factor was evaluated. According to the hot rolling simulation results, experimental hot rolling parameters were established in order to obtain the desired microstructure avoiding the presence of ferrite precipitation during the process. The microstructural characterization of the hot rolled steel was carried out using optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was found that the phases present in the steel after hot rolling are austenite and α′-martensite. Additionally, to understand the mechanical behavior, tensile tests were performed and concluded that this new steel can be catalogued in the third automotive generation.


Author(s):  
Reza Masoudi Nejad ◽  
Peyman Noroozian Rizi ◽  
Maedeh Sadat Zoei ◽  
Karim Aliakbari ◽  
Hossein Ghasemi

2004 ◽  
Vol 75 (5) ◽  
pp. 330-338 ◽  
Author(s):  
Xiaochun Sha ◽  
Dianzhong Li ◽  
Yongjun Lan ◽  
Xiaogang Zhang ◽  
Yiyi Li

Sign in / Sign up

Export Citation Format

Share Document