scholarly journals 3D-FEM Simulation of Hot Rolling Process and Characterization of the Resultant Microstructure of a Light-Weight Mn Steel

Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 569
Author(s):  
Ana Claudia González-Castillo ◽  
José de Jesús Cruz-Rivera ◽  
Mitsuo Osvaldo Ramos-Azpeitia ◽  
Pedro Garnica-González ◽  
Carlos Gamaliel Garay-Reyes ◽  
...  

Computational simulation has become more important in the design of thermomechanical processing since it allows the optimization of associated parameters such as temperature, stresses, strains and phase transformations. This work presents the results of the three-dimensional Finite Element Method (FEM) simulation of the hot rolling process of a medium Mn steel using DEFORM-3D software. Temperature and effective strain distribution in the surface and center of the sheet were analyzed for different rolling passes; also the change in damage factor was evaluated. According to the hot rolling simulation results, experimental hot rolling parameters were established in order to obtain the desired microstructure avoiding the presence of ferrite precipitation during the process. The microstructural characterization of the hot rolled steel was carried out using optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was found that the phases present in the steel after hot rolling are austenite and α′-martensite. Additionally, to understand the mechanical behavior, tensile tests were performed and concluded that this new steel can be catalogued in the third automotive generation.

2014 ◽  
Vol 941-944 ◽  
pp. 1726-1734 ◽  
Author(s):  
Hong Bin Xu ◽  
Shu Rong Ding ◽  
Yong Zhong Huo

The governing equations and the finite element model for the coupled thermo-mechanical multi-pass vertical-horizontal rolling process of a zircaloy strip are established. Considering the temperature-dependent and strain rate-dependent constitutive relation of zircaloy, the numerical simulation of the three-pass V-H rolling process is realized by the coupled thermo-mechanical dynamic explicit finite element method. The computational results such as the plastic deformation, the size variations and the temperature variations in three passes are discussed. The research results indicate that edging by vertical roller benefits improving the sizes of the strip and the temperature variations are rather obvious during the three-pass hot rolling process. The research provides experience and foundations for the FEM simulation of the hot rolling process of composite slabs for nuclear fuel elements.


2012 ◽  
Vol 263-266 ◽  
pp. 670-673
Author(s):  
Wen Ping Liu ◽  
Pei Qi Wang

To estimate the effect of roller deformation on the workpiece during the rolling process of H-beams, it is essential to consider the force exerted on the rollers and the deformation thereof. For this purpose, a three-dimension thermo-mechanical coupling model has been built with the finite element analytical package ABAQUS to simulate the hot rolling process of H-beams. In particular, the simulation is conducted under the assumption that the rollers are elastic and rolling torque imposed unilaterally, which agrees with the practical rolling conditions. Noting the results of FEM simulation, the metal flow and temperature distribution have been obtained. To verify the effectiveness of the proposed simulation, comparisons of the roller contact reaction and temperature between the simulated and measured values have been made. The simulation is meaningful for preparing continuous rolling procedures of H-beams.


2010 ◽  
Vol 3 (1) ◽  
pp. 65-71
Author(s):  
Armindo Guerrero ◽  
Javier Belzunce ◽  
Covadonga Betegon ◽  
Julio Jorge ◽  
Francisco J. Vigil

Author(s):  
Reza Masoudi Nejad ◽  
Peyman Noroozian Rizi ◽  
Maedeh Sadat Zoei ◽  
Karim Aliakbari ◽  
Hossein Ghasemi

2004 ◽  
Vol 75 (5) ◽  
pp. 330-338 ◽  
Author(s):  
Xiaochun Sha ◽  
Dianzhong Li ◽  
Yongjun Lan ◽  
Xiaogang Zhang ◽  
Yiyi Li

2021 ◽  
Vol 316 ◽  
pp. 449-454
Author(s):  
Elena Shiriaeva ◽  
Marina Polyakova

Pipe steel sheet is manufactured by hot rolling technological process. Technological regimes of every technological operation can vary in a wide range affecting pipe steel sheet properties. It is shown that system analysis provides the effective way for searching out the basics for mathematical modeling of multi-variant technological processes. The detailed scheme of steel sheet hot rolling process is presented, determining its input and output parameters. Flows of material, energy, and information are presented for each technological operation. Metallurgical concept of pipe steel manufacturing is shown as the basics for competitive product manufacturing. It is proposed to analyze the hot rolling process as a set of target functions, which will make it possible to achieve the pipe steel sheet with the desired level of mechanical properties. The proposed approach based on system analysis allows to find tendencies for further development of hot rolling.


Sign in / Sign up

Export Citation Format

Share Document