Effects of cold-water immersion to aid futsal athlete’s recovery after exercise induced muscle damage

Author(s):  
Junaidi JUNAIDI ◽  
Akhmad S. SOBARNA ◽  
Tirto A. APRIYANTO ◽  
Tommy A. APRIANTONO ◽  
Bagus W. WINATA ◽  
...  
2012 ◽  
Vol 27 (5) ◽  
pp. 1051-1058 ◽  
Author(s):  
Mariana Zingari Camargo ◽  
Cláudia Patrícia Cardoso Martins Siqueira ◽  
Maria Carla Perozim Preti ◽  
Fábio Yuzo Nakamura ◽  
Franciele Mendes de Lima ◽  
...  

2017 ◽  
Vol 12 (3) ◽  
pp. 402-409 ◽  
Author(s):  
Abd-Elbasset Abaïdia ◽  
Julien Lamblin ◽  
Barthélémy Delecroix ◽  
Cédric Leduc ◽  
Alan McCall ◽  
...  

Purpose:To compare the effects of cold-water immersion (CWI) and whole-body cryotherapy (WBC) on recovery kinetics after exercise-induced muscle damage.Methods:Ten physically active men performed single-leg hamstring eccentric exercise comprising 5 sets of 15 repetitions. Immediately postexercise, subjects were exposed in a randomized crossover design to CWI (10 min at 10°C) or WBC (3 min at –110°C) recovery. Creatine kinase concentrations, knee-flexor eccentric (60°/s) and posterior lower-limb isometric (60°) strength, single-leg and 2-leg countermovement jumps, muscle soreness, and perception of recovery were measured. The tests were performed before and immediately, 24, 48, and 72 h after exercise.Results:Results showed a very likely moderate effect in favor of CWI for single-leg (effect size [ES] = 0.63; 90% confidence interval [CI] = –0.13 to 1.38) and 2-leg countermovement jump (ES = 0.68; 90% CI = –0.08 to 1.43) 72 h after exercise. Soreness was moderately lower 48 h after exercise after CWI (ES = –0.68; 90% CI = –1.44 to 0.07). Perception of recovery was moderately enhanced 24 h after exercise for CWI (ES = –0.62; 90% CI = –1.38 to 0.13). Trivial and small effects of condition were found for the other outcomes.Conclusions:CWI was more effective than WBC in accelerating recovery kinetics for countermovement-jump performance at 72 h postexercise. CWI also demonstrated lower soreness and higher perceived recovery levels across 24–48 h postexercise.


2018 ◽  
Vol 34 (5) ◽  
pp. 991-999
Author(s):  
Vanessa Batista da Costa Santos ◽  
Julio Cesar Molina Correa ◽  
Priscila Chierotti ◽  
Giovana Stipp Ballarin ◽  
Dari de Oliveira Toginho Filho ◽  
...  

2016 ◽  
Vol 37 (12) ◽  
pp. 937-943 ◽  
Author(s):  
A. Vieira ◽  
A. Siqueira ◽  
J. Ferreira-Junior ◽  
J. do Carmo ◽  
J. Durigan ◽  
...  

2016 ◽  
Vol 51 (3) ◽  
pp. 252-257 ◽  
Author(s):  
Cory L. Butts ◽  
Brendon P. McDermott ◽  
Brian J. Buening ◽  
Jeffrey A. Bonacci ◽  
Matthew S. Ganio ◽  
...  

Exercise conducted in hot, humid environments increases the risk for exertional heat stroke (EHS). The current recommended treatment of EHS is cold-water immersion; however, limitations may require the use of alternative resources such as a cold shower (CS) or dousing with a hose to cool EHS patients.Context: To investigate the cooling effectiveness of a CS after exercise-induced hyperthermia.Objective: Randomized, crossover controlled study.Design: Environmental chamber (temperature = 33.4°C ± 2.1°C; relative humidity = 27.1% ± 1.4%).Setting: Seventeen participants (10 male, 7 female; height = 1.75 ± 0.07 m, body mass = 70.4 ± 8.7 kg, body surface area = 1.85 ± 0.13 m2, age range = 19–35 years) volunteered.Patients or Other Participants: On 2 occasions, participants completed matched-intensity volitional exercise on an ergometer or treadmill to elevate rectal temperature to ≥39°C or until participant fatigue prevented continuation (reaching at least 38.5°C). They were then either treated with a CS (20.8°C ± 0.80°C) or seated in the chamber (control [CON] condition) for 15 minutes.Intervention(s): Rectal temperature, calculated cooling rate, heart rate, and perceptual measures (thermal sensation and perceived muscle pain).Main Outcome Measure(s): The rectal temperature (P = .98), heart rate (P = .85), thermal sensation (P = .69), and muscle pain (P = .31) were not different during exercise for the CS and CON trials (P > .05). Overall, the cooling rate was faster during CS (0.07°C/min ± 0.03°C/min) than during CON (0.04°C/min ± 0.03°C/min; t16 = 2.77, P = .01). Heart-rate changes were greater during CS (45 ± 20 beats per minute) compared with CON (27 ± 10 beats per minute; t16 = 3.32, P = .004). Thermal sensation was reduced to a greater extent with CS than with CON (F3,45 = 41.12, P < .001).Results: Although the CS facilitated cooling rates faster than no treatment, clinicians should continue to advocate for accepted cooling modalities and use CS only if no other validated means of cooling are available.Conclusions:


2016 ◽  
Vol 51 (7) ◽  
pp. 540-549 ◽  
Author(s):  
Líllian Beatriz Fonseca ◽  
Ciro J. Brito ◽  
Roberto Jerônimo S. Silva ◽  
Marzo Edir Silva-Grigoletto ◽  
Walderi Monteiro da Silva ◽  
...  

Context: Cold-water immersion (CWI) has been applied widely as a recovery method, but little evidence is available to support its effectiveness. Objective: To investigate the effects of CWI on muscle damage, perceived muscle soreness, and muscle power recovery of the upper and lower limbs after jiu-jitsu training. Design: Crossover study. Setting: Laboratory and field. Patients or Other Participants: A total of 8 highly trained male athletes (age = 24.0 ± 3.6 years, mass = 78.4 ± 2.4 kg, percentage of body fat = 13.1% ± 3.6%) completed all study phases. Intervention(s): We randomly selected half of the sample for recovery using CWI (6.0°C ± 0.5°C) for 19 minutes; the other participants were allocated to the control condition (passive recovery). Treatments were reversed in the second session (after 1 week). Main Outcome Measure(s): We measured serum levels of creatine phosphokinase, lactate dehydrogenase (LDH), aspartate aminotransferase, and alanine aminotransferase enzymes; perceived muscle soreness; and recovery through visual analogue scales and muscle power of the upper and lower limbs at pretraining, postrecovery, 24 hours, and 48 hours. Results: Athletes who underwent CWI showed better posttraining recovery measures because circulating LDH levels were lower at 24 hours postrecovery in the CWI condition (441.9 ± 81.4 IU/L) than in the control condition (493.6 ± 97.4 IU/L; P = .03). Estimated muscle power was higher in the CWI than in the control condition for both upper limbs (757.9 ± 125.1 W versus 695.9 ± 56.1 W) and lower limbs (53.7 ± 3.7 cm versus 35.5 ± 8.2 cm; both P values = .001). In addition, we observed less perceived muscle soreness (1.5 ± 1.1 arbitrary units [au] versus 3.1 ± 1.0 au; P = .004) and higher perceived recovery (8.8 ± 1.9 au versus 6.9 ± 1.7 au; P = .005) in the CWI than in the control condition at 24 hours postrecovery. Conclusions: Use of CWI can be beneficial to jiu-jitsu athletes because it reduces circulating LDH levels, results in less perceived muscle soreness, and helps muscle power recovery at 24 hours postrecovery.


Sign in / Sign up

Export Citation Format

Share Document