Estimation of Genetic Variability, Heritability and Genetic Advance for Seed Yield and Its Attributes in Sesame (Sesamum indicum L.)

2020 ◽  
Vol 11 (3) ◽  
pp. 219-224
Author(s):  
Gopal Kadvani ◽  
◽  
J. A. Patel ◽  
J. R. Patel ◽  
K. P. Prajapati ◽  
...  
Author(s):  
Vijay Pratap ◽  
Vijay Sharma ◽  
Kamaluddin . ◽  
Gaurav Shukla

Background: Assessment of genetic variability and inter-relationship between the characters can be used in the breeding programme to evolve new varieties with wide genetic diversity to maximize the yield potential in crop improvement programmes. Eighty-four field pea genotypes were evaluated in an augmented block design for thirteen quantitative traits to study variance components, heritability, genetic advance and inter-relationship between the yield and yield contributing traits. Methods: The extent of phenotypic and genotypic variation that exist in a character was calculated by the formula suggested by Burton and de Vane (1953). Heritability in broad sense and genetic advance as per cent of mean for each character was computed using the formula suggested by Hanson et al. (1956) and Johnson et al. (1955), respectively. Correlation coefficient was calculated by method suggested by Searle (1961) and path coefficient analysis done as per method of Wright (1921) and elaborated by Dewey and Lu (1959).Result: Significant differences observed among the genotypes tested for the yield characters indicated the presence of variability. High heritability coupled with high genetic advance as percent of mean was observed for the traits viz., plant height, effective pods plant-1, harvest index and seed yield plant-1 were governed by additive gene effects which will aid in effective selection. Correlation coefficient analysis revealed that seed yield plant-1 had highly significant and positive correlation with biological yield plant-1, effective pods plant-1, harvest index, seeds pods-1 and effective nodes plant-1, indicating that these traits are strongly associated with seed yield in field pea. Path coefficient analysis identified biological yield plant-1 followed by harvest index, seed pod-1, effective nodes plant-1, 100-seed weight and day to 50% flowering as highly desirable components with great direct effects on seed yield. 


2019 ◽  
Vol 81 (2) ◽  
pp. 87-104
Author(s):  
Sabrin Sultana ◽  
Firoz Mahmud ◽  
Md Abdur Rahim

Sesame (Sesamum indicum L.) is one of the oldest oilseed crops and important for high nutritional quality as well as medicinal value. Fifty diverse sesame genotypes were evaluated to study genetic variability. The results revealed that the genotypes were a significant variation in most of the studied characters. In all cases, the phenotypic variances were much higher than genotypic variances suggests a higher level of the environmental effect on the expression of these characters. The highest genotypic coefficient of variations (GCV) was observed in seed yield per plant while the highest heritability was exhibited by hundred seed weight followed by days to 80% maturity, pods per plant, number of branches per plant and seed yield per plant. The genotypic correlation with seed yield per plant showed a significantly strong positive with days to 50% flowering, plant height and number of pods per plant at both the genotypic and phenotypic level. The path coefficient analysis showed that pods per plant and seeds per pod were the most important contributing traits to seed yield. The 50 sesame genotypes were grouped into five clusters. The highest inter-cluster distance was observed between the cluster III and V while the lowest inter-cluster distance was observed between the cluster III and IV. Among 50 sesame genotypes G7, G36, G38 and G46 might be suggested for future hybridization program for the improvement of sesame yield.


2016 ◽  
Vol 20 (2) ◽  
pp. 51 ◽  
Author(s):  
Ratri Tri Hapsari

<p>Estimation of Genetic Variability and Correlation Among Early Maturity Mungbean Yield Components. Ratri T. Hapsari. Early maturity mungbean [Vigna radiata (L.) Wilczek] is very important to avoid drought stress, pest and disease attack as well as increase the index planting. The aims of this research was to estimate genetic variability and correlation. The genetic study included heritability, coefficient of genetic variability, genetic advance and correlation among yield components so that it can be used as selection criteria for early maturity mungbean. A total of 145 accessions of mungbean were tested at Muneng farm station in March-June 2010 using a randomized block design, with two replicates. Each accession was planted at 0.8 m x 4 m with spacing 40 cm x 10 cm, with two plants/hole. Fertilization was done by adding 50 kg urea, 75 kg SP36, and 75 kg KCl/ha, at the time of planting. The results showed that mungbean accesions had significant differences in all characters tested. The genetic variance value of all characters was broad with high broadsense heritability estimates, except for number of pods/ cluster and seed number/pod. Genetic advance of all characters were high, except for seed number/pod. The phenotypic correlation between 1000 seeds weight and pod length with seed yield were positive significant while plant height, flowering days, days to maturity, and number of pods per plant had negative significant correlation with its yield. Therefore, plant height, days to maturity, pod lenght, 1000 seeds weight and seed yield could be used as selection criteria based on estimating value of genetic variability, correlation with yield and economic value. There were five genotype which have index value above 20, i.e MLGV 0353, MLGV 0362, MLGV 0354, MLGV 0358, and MLGV 0351.</p><p> </p><p><strong>Abstrak</strong></p><p>Kacang hijau [Vigna radiata (L.) Wilczek] berumur genjah berperan penting untuk menghindari cekaman kekeringan, serangan hama penyakit, dan meningkatkan indeks pertanaman. Penelitian ini bertujuan untuk mengetahui nilai duga parameter genetik dan korelasi antar komponen hasil sehingga dapat digunakan sebagai kriteria seleksi kacang hijau berumur genjah. Sebanyak 145 genotipe kacang hijau diuji di KP Muneng pada bulan Maret sampai dengan Juni 2010 menggunakan Rancangan Acak Kelompok dengan dua ulangan. Setiap aksesi ditanam pada plot 0,8 m x 4 m dengan jarak tanam 40 cm x 10 cm, dua tanaman/lubang. Pemupukan dilakukan dengan 50 kg urea, 75 kg SP36, dan 75 kg KCl per hektar pada saat tanam. Parameter yang diamati adalah tinggi tanaman, umur 50% berbunga, umur 80% masak, jumlah polong/tangkai, jumlah polong/tanaman, panjang polong, jumlah biji/polong, bobot 1.000 biji, dan bobot biji/plot. Hasil penelitian menunjukkan bahwa genotipe yang diuji memiliki keragaman semua sifat yang diamati. Keragaman genetik dan fenotipik tergolong luas. Heritabilitas arti luas tergolong tinggi, kecuali jumlah polong/tangkai dan jumlah biji/polong tergolong sedang. Kemajuan genetik seluruh karakter tinggi, kecuali jumlah biji/polong. Korelasi antara bobot 1.000 biji dan panjang polong bernilai positif nyata dengan bobot biji/plot, sedangkan tinggi tanaman, umur berbunga, umur masak, dan jumlah polong per tanaman berkorelasi negatif nyata. Berdasarkan nilai duga parameter genetik, korelasi antarhasil, dan nilai ekonomisnya, maka tinggi tanaman, umur masak, panjang polong, bobot 1.000 biji dan bobot biji per plot dapat dijadikan kriteria seleksi indeks. Terdapat lima genotipe memiliki nilai indeks lebih dari 20, yaitu MLGV 0353, MLGV 0362, MLGV 0354, MLGV 0358, dan MLGV 0351.</p>


1970 ◽  
Vol 9 (1-2) ◽  
pp. 29-36 ◽  
Author(s):  
MA Zaman ◽  
M Tuhina-Khatun ◽  
MZ Ullah ◽  
M Moniruzzamn ◽  
KH Alam

An experiment was conducted at the Research farm of Regional Agricultural Research Station, BARI, Hathazari, Chittagong during Rabi season (December to April), 2009-2010 for estimation of genetic variability, genetic parameters and correlation coefficient among different yield components in a randomized block design with three replications. Thirty four groundnut genotypes were tested in the experiment. Highly significant variations were observed among the genotypes for all the characters studied. The highest genetic coefficient of variation was observed for karnel yield per hectare, followed by karnel yield per plant, branches per plant, immature and mature nuts per plant, 100 kernal weight and plant height. The highest heritability was observed in karnel yield per pant (95.08%), followed by karnel yield per hectare (94.38%), 100 kernal weight (87.01%), immature and mature nuts per plant (82.24%, 80.32%), branches per plant (79.54%) and 100 nut weight (78.98%), while high values of genetic advance were obtained in all the characters except days to maturity and days to 50% flowering. The seed yield per plant showed the highly significant and positive association with nut size, number of nuts per plant, karnel size and days to 50% flowering. The number of mature nuts per plant had high positive direct effect on seed yield per hectare followed by nut size, shelling percentage, days to 50% flowering and days to maturity. Therefore, branches per plant, plant height, nuts per plant, nut size, karnel size, days to 50% flowering, shelling percentage and days to maturity were identified to be the important characters which could be used in selection for yield. Keywords: Genetic variability; heritability; genetic advance; groundnut DOI: http://dx.doi.org/10.3329/agric.v9i1-2.9476 The Agriculturists 2011; 9(1&2): 29-36


Sign in / Sign up

Export Citation Format

Share Document