scholarly journals Monitoring Land Cover Changes in the Disaster-Prone Area: A Case Study of Cangkringan Sub-District, the Flanks of Mount Merapi, Indonesia

2017 ◽  
Vol 31 (2) ◽  
pp. 209-219 ◽  
Author(s):  
Ronggo Sadono ◽  
Hartono Hartono ◽  
Mochammad Maksum Machfoedz ◽  
Setiaji Setiaji

Volcanic eruption is one of the natural factors that affect land cover changes. This study aimed to monitor land cover changes using a remote sensing approach in Cangkringan Sub-district, Yogyakarta, Indonesia, one of the areas most vulnerable to Mount Merapi eruption. Three satellite images, dating from 2001, 2006 and 2011, were used as main data for land cover classification based on a supervised classification approach. The land cover detection analysis was undertaken by overlaying the classification results from those images. The results show that the dominant land cover class is annual crops, covering 40% of the study area, while the remaining 60% consists of forest cover types, dryland farming, paddy fields, settlements, and bare land. The forests were distributed in the north, and the annual crops in the middle of the study area, while the villages and the rice fields were generally located in the south. In the 2001–2011 period, forests were the most increased land cover type, while annual crops decreased the most, as a result of the eruption of Mount Merapi in 2010. Such data and information are important for the local government or related institutions to formulate Detailed Spatial Plans (RDTR) in the Disaster-Prone Areas (KRB).

Forest cover in Bengkulu is reduced. Data from WARSI shows, 1990 forest cover areas in the province are approximately 1,009,209 hectares or 50.4 % of the land area reaching 1,979,515 hectares. But now, it is only 685,762 hectares of the area of his blood. That is, the period of 25 years, there is a forest cover decline of 323,447 hectares. Forest and land cover changes are the largest contributor to greenhouse gas emissions. The purpose of this article is to see land cover changes based on carbon stock in the years 2009 and 2018. Model of land cover change based on carbon stock year 2028 and 2038. The method of this research uses the calculation of the Stock Difference Approach with spatial analysis of national land closure of Landsat imagery 2009-2018 and biomass data for forest inventory results Geographic Information System (GIS). The results of this research were the reduced forest area and the change in land use changed from 2009 and 2018. So carbon stock is also increasingly reduced.


2021 ◽  
Vol 912 (1) ◽  
pp. 012026
Author(s):  
A S Thoha ◽  
N Sulistiyono ◽  
N Saraswita ◽  
D Wiranata ◽  
S M Sirait ◽  
...  

Abstract Damage to conservation areas in North Sumatra can be mitigated by understanding the pattern of land cover change, which can be performed by detecting hotspots and their temporal and spatial patterns. This study aimed to explore land cover spatially and temporally before and after forest fires in the conservation areas in North Sumatra. Data on the hotspots, satellite imagery, land cover maps, and field verification were used to see the transition of land cover changes before and after forest and land fires. Temporal and spatial analysis was employed to see the trend of land cover changes of the land before and after the fires. Field verification was conducted through observations and interviews related to land cover conditions in the field caused by forest and land fires. This study found three conservation areas with the highest number of hotspots in 2014 in the period 2001-2019, including Gunung Leuser National Park (GLNP), Dolok Surungan Wildlife Reserve, and Barumun Wildlife Reserve during the 2001-2019 period. In 2010 and 2014 there were strong indications of a large area of land burning in three conservation areas. The burned land was near the outer boundary of the conservation areas and continued to expand into the areas over time. The area of the non-forest cover was relatively stable between periods prior to the discovery of several hotspots. Changes in forest cover to non-forest have become more widespread after the highest number of hotspots were detected in 2010. Conservation area management and various parties need to prevent the expansion of forest clearing considering the strategic role especially in GNLP as a world heritage.


2012 ◽  
Vol 49 (5) ◽  
pp. 980-989 ◽  
Author(s):  
S. Bajocco ◽  
A. De Angelis ◽  
L. Perini ◽  
A. Ferrara ◽  
L. Salvati

Sign in / Sign up

Export Citation Format

Share Document