Output Tracking for Nonlinear Systems with Uncertainities

1990 ◽  
Author(s):  
S. Behtash ◽  
S. M. Shahruz
2019 ◽  
Vol 42 (8) ◽  
pp. 1511-1520
Author(s):  
Zong-Yao Sun ◽  
Yu-Jie Gu ◽  
Qinghua Meng ◽  
Wei Sun ◽  
Zhen-Guo Liu

This paper investigates the output tracking control problem for a class of nonlinear systems with zero dynamic. On the basis of adding a power integrator method and approximation technique, an appropriate controller is proposed to guarantee that the tracking error turns to a preassigned neighborhood of the origin. The systems under investigation allow unmeasurable dynamic uncertainties, unknown nonlinear functions and unknown high-order terms. As an application, two examples are provided to illustrate the effectiveness of a control strategy.


2019 ◽  
Vol 42 (6) ◽  
pp. 1180-1190
Author(s):  
Weijie Sun ◽  
Zhenhua Zhu ◽  
Jianglin Lan ◽  
Yunjian Peng

This paper is dedicated to adaptive output regulation for a class of nonlinear systems with asymptotic output tracking and guarantee of prescribed transient performance. With the employment of internal model principle, we first transform this problem into a specific adaptive stabilization problem with output constraints. Then, by integrating the time-varying Barrier Lyapunov Function (BLF) technique together with the high gain feedback method, we develop an output-based control law to solve the constrained stabilization problem and consequently confine the output tracking error to a predefined arbitrary region. The output-based control law enables adaptive output regulation in the sense that, under unknown exosystem dynamics, all the closed-loop system signals are bounded whilst the controlled output constraints are not violated. Finally, efficacy of the proposed design is illustrated through a simulation example.


Sign in / Sign up

Export Citation Format

Share Document