An Improved Inverse Filtering Method for Parametric Spectral Estimation

Author(s):  
Chang-Yung Chi ◽  
Diing Wang
Author(s):  
Ratko Ivković ◽  
Mile Petrović ◽  
Ivana Milošević ◽  
Dejan Đukić ◽  
Vladimir Maksimović

1997 ◽  
Vol 36 (04/05) ◽  
pp. 41-46
Author(s):  
A. Kjaer ◽  
W. Jensen ◽  
T. Dyrby ◽  
L. Andreasen ◽  
J. Andersen ◽  
...  

Abstract.A new method for sleep-stage classification using a causal probabilistic network as automatic classifier has been implemented and validated. The system uses features from the primary sleep signals from the brain (EEG) and the eyes (AOG) as input. From the EEG, features are derived containing spectral information which is used to classify power in the classical spectral bands, sleep spindles and K-complexes. From AOG, information on rapid eye movements is derived. Features are extracted every 2 seconds. The CPN-based sleep classifier was implemented using the HUGIN system, an application tool to handle causal probabilistic networks. The results obtained using different training approaches show agreements ranging from 68.7 to 70.7% between the system and the two experts when a pooled agreement is computed over the six subjects. As a comparison, the interrater agreement between the two experts was found to be 71.4%, measured also over the six subjects.


The study of the transport and capture of particles moving in a fluid flow in a porous medium is an important problem of underground hydromechanics, which occurs when strengthening loose soil and creating watertight partitions for building tunnels and underground structures. A one-dimensional mathematical model of long-term deep filtration of a monodisperse suspension in a homogeneous porous medium with a dimensional particle retention mechanism is considered. It is assumed that the particles freely pass through large pores and get stuck at the inlet of small pores whose diameter is smaller than the particle size. The model takes into account the change in the permeability of the porous medium and the permissible flow through the pores with increasing concentration of retained particles. A new spatial variable obtained by a special coordinate transformation in model equations is small at any time at each point of the porous medium. A global asymptotic solution of the model equations is constructed by the method of series expansion in a small parameter. The asymptotics found is everywhere close to a numerical solution. Global asymptotic solution can be used to solve the inverse filtering problem and when planning laboratory experiments.


2008 ◽  
Vol 128 (8) ◽  
pp. 1358-1366 ◽  
Author(s):  
Masao Yamamoto ◽  
Hisao Mase ◽  
Hiroshi Yajima ◽  
Hiroshi Kinukawa

Sign in / Sign up

Export Citation Format

Share Document