Feedback control design for an elastance-based mock circulatory system

Author(s):  
M. Loh ◽  
Yih-Choung Yu
ASAIO Journal ◽  
2008 ◽  
Vol 54 (3) ◽  
pp. 249-255 ◽  
Author(s):  
Hassan A. Khalil ◽  
Daniel T. Kerr ◽  
Matthew A. Franchek ◽  
Ralph W. Metcalfe ◽  
Robert J. Benkowski ◽  
...  

1997 ◽  
Vol 20 (1) ◽  
pp. 37-42 ◽  
Author(s):  
K. Mabuchi ◽  
T. Chinzei ◽  
Y. Abe ◽  
K. Imanishi ◽  
T. Isoyama ◽  
...  

An electrochemical sensor system to allow real-time measurement and feedback of catecholamine concentrations was developed for use in the control of artificial hearts. Electrochemical analyses were carried out using a carbon fiber working electrode, an Ag-AgCI reference electrode, and a potentiostat. The operating parameters of the pneumatically-driven artificial heart system were altered in accordance with the algorithm for changes in the catecholamine concentration. The minimum detectable concentrations of both adrenaline and noradrenaline in a mock circulatory system using a phosphate-buffered solution were approximately 1-2 ng/ml (10-8 mol/L). An artificial heart control system utilizing this set-up performed satisfactorily without delay, although sensor sensitivity decreased when placed in goat plasma instead of a phosphate-buffered solution, due to the adsorption of various substances such as plasma proteins onto the electrodes. This study demonstrated the future feasibility of a feedback control system for artificial hearts using catecholamine concentrations.


Author(s):  
Young Joo Shin ◽  
Peter H. Meckl

Benchmark problems have been used to evaluate the performance of a variety of robust control design methodologies by many control engineers over the past 2 decades. A benchmark is a simple but meaningful problem to highlight the advantages and disadvantages of different control strategies. This paper verifies the performance of a new control strategy, which is called combined feedforward and feedback control with shaped input (CFFS), through a benchmark problem applied to a two-mass-spring system. CFFS, which consists of feedback and feedforward controllers and shaped input, can achieve high performance with a simple controller design. This control strategy has several unique characteristics. First, the shaped input is designed to extract energy from the flexible modes, which means that a simpler feedback control design based on a rigid-body model can be used. In addition, only a single frequency must be attenuated to reduce residual vibration of both masses. Second, only the dynamics between control force and the first mass need to be considered in designing both feedback and feedforward controllers. The proposed control strategy is applied to a benchmark problem and its performance is compared with that obtained using two alternative control strategies.


Sign in / Sign up

Export Citation Format

Share Document