Adaptive Super-Twisting Sliding Mode Control for Ocean Current Turbine-Driven Permanent Magnet Synchronous Generator

Author(s):  
Yufei Tang ◽  
Yuantao Zhang ◽  
Arezoo Hasankhani ◽  
James VanZwieten
2021 ◽  
Vol 14 (1) ◽  
pp. 484-495
Author(s):  
Rania Moutchou ◽  
◽  
Ahmed Abbou ◽  
Salah Rhaili ◽  
◽  
...  

This paper presents a modelling study and focuses on an advanced higher order slip mode control strategy (Super Twisting Algorithm) for a variable speed wind turbine based on a permanent magnet synchronous generator to capture the maximum possible wind power from the turbine while simultaneously reducing the effect of mechanical stress, powered by a voltage inverter and controlled by vector PWM technique. This paper presents first and second order sliding mode control schemes. On the other hand, a challenging matter of pure SMC of order one can be summed up in the produced chattering phenomenon. In this work, this issue has been mitigated by implementing a new control. The proposed control, characterized by a precision in the case of a continuation of a significant reduction of the interference phenomenon, successfully addresses the problems of essential non-linearity of wind turbine systems. This type of control strategy presents more advanced performances such as behaviour without chattering (no additional mechanical stress), excellent convergence time, robustness in relation to external disturbances (faults in the network) and to non-modelled dynamics (generator and turbine) which have been widely used in power system applications by first order sliding mode control. In particular, second-order sliding regime control algorithms will be applied to the PMSG to ensure excellent dynamic performance. The suggested control is compared to the proportional-integral controller and sliding mode control of order one. The results of simulations under turbulent wind speed and parameter variations show the efficiency, robustness and significantly improved performance of the proposed control approach to distinguish and track quickly (about 10ms depending on the shading pattern) and at the same time saving the main priorities of the sliding mode of order one by reducing the existing chatter. The systems performances were tested and compared using Matlab/Simulink Software.


Author(s):  
Nada Zine Laabidine ◽  
Afrae Errarhout ◽  
Chakib El Bakkali ◽  
Karim Mohammed ◽  
Badre Bossoufi

This paper aims to implement a new contribution for sliding mode control (SMC) of permanent magnet synchronous generator (PMSG) for wind systems conversion with track the maximum power point tracking (MPPT) power. The SMC is a very popular approach due to its robustness in dealing with the non-linear electrical power systems. In this work, the application of the SMC control is by using the non lineare model of the PMSG. The objective of this work is to control stator active and stator reactive power, and the voltage-frequency for a better injection into the network. The results obtained show better robustness.


2019 ◽  
pp. 0309524X1988936
Author(s):  
Taoufik Sandabad ◽  
Mohammed Rachidi ◽  
Omar Dahhani

In this article, we process the modeling and control of a global chain of the wind energy conversion system based on a permanent magnet synchronous generator, and the injection of the produced energy into electrical grid. The proposed control technique of the wind energy system is based on a sliding mode control which is designed for a variable speed wind turbine. Sliding mode control is assessed on a wind turbine to supply three phases grid. The aim in this work is to operate over all the wind conversion system at its maximum power point. Initially, three controls have been designed by sliding mode control: the first is for electromagnetic torque of the used permanent magnet synchronous generator, the second is for the machine side converter, and the last is for the grid side converter. Thereafter, another proportional integral controller has been designed for the phase looked loop. Finally, the permanent magnet synchronous generator–based wind turbine and the grid are modeled, and proposed controls are applied, various simulations results by MATLAB/SIMULINK environment are presented and discussed.


Actuators ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 92
Author(s):  
Youcef Belkhier ◽  
Abdelyazid Achour ◽  
Rabindra Nath Shaw ◽  
Nasim Ullah ◽  
Md. Shahariar Chowdhury ◽  
...  

Higher efficiency, predictability, and high-power density are the main advantages of a permanent magnet synchronous generator (PMSG)-based hydro turbine. However, the control of a PMSG is a nontrivial issue, because of its time-varying parameters and nonlinear dynamics. This paper suggests a novel optimal fuzzy supervisor passivity-based high order sliding-mode controller to address problems faced by conventional techniques such as PI controls in the machine side. An inherent advantage of the proposed method is that the nonlinear terms are not canceled but compensated in a damped way. The proposed controller consists of two main parts: the fuzzy gain supervisor-PI controller to design the desired dynamic of the system by controlling the rotor speed, and the fuzzy gain-high order sliding-mode control to compute the controller law. The main objectives are feeding the electrical grid with active power, extracting the maximum tidal power, and regulating the reactive power and DC voltage toward their references, whatever the disturbances caused by the PMSG. The main contribution and novelty of the present work consists in the new robust fuzzy supervisory passivity-based high order sliding-mode controller, which treats the mechanical characteristics of the PMSG as a passive disturbance when designing the controller and compensates it. By doing so, the PMSG tracks the optimal speed, contrary to other controls which only take into account the electrical part. The combined high order sliding-mode controller (HSMC) and passivity-based control (PBC) resulted in a hybrid controller law which attempts to greatly enhance the robustness of the proposed approach regardless of various uncertainties. Moreover, the proposed controller was also validated using a processor in the loop (PIL) experiment using Texas Instruments (TI) Launchpad. The control strategy was tested under parameter variations and its performances were compared to the nonlinear control methods. High robustness and high efficiency were clearly illustrated by the proposed new strategy over compared methods under parameter uncertainties using MATLAB/Simulink and a PIL testing platform.


Sign in / Sign up

Export Citation Format

Share Document