Airship Pitch Control with Composite Nonlinear Feedback

Author(s):  
Linlin Ding ◽  
Weiyao Lan ◽  
Zhibin Li
Author(s):  
Sonal Singh ◽  
Shubhi Purwar

Background and Introduction: The proposed control law is designed to provide fast reference tracking with minimal overshoot and to minimize the effect of unknown nonlinearities and external disturbances. Methods: In this work, an enhanced composite nonlinear feedback technique using adaptive control is developed for a nonlinear delayed system subjected to input saturation and exogenous disturbances. It ensures that the plant response is not affected by adverse effect of actuator saturation, unknown time delay and unknown nonlinearities/ disturbances. The analysis of stability is done by Lyapunov-Krasovskii functional that guarantees asymptotical stability. Results: The proposed control law is validated by its implementation on exothermic chemical reactor. MATLAB figures are provided to compare the results. Conclusion: The simulation results of the proposed controller are compared with the conventional composite nonlinear feedback control which illustrates the efficiency of the proposed controller.


2014 ◽  
Vol 663 ◽  
pp. 127-134 ◽  
Author(s):  
M.H. Che Hasan ◽  
Y.M. Sam ◽  
Ke Mao Peng ◽  
Muhamad Khairi Aripin ◽  
Muhamad Fahezal Ismail

In this paper, Composite Nonlinear Feedback (CNF) is applied on Active Front Steering (AFS) system for vehicle yaw stability control in order to have an excellent transient response performance. The control method, which has linear and nonlinear parts that work concurrently capable to track reference signal very fast with minimum overshoot, fast settling time, and without exceed nature of actuator saturation limit. Beside, modelling of 7 degree of freedom for typical passenger car with magic formula to represent tyre nonlinearity behaviour is also presented to simulate controlled vehicle as close as possible with a real situation. An extensive computer simulation is performed with considering a various profile of cornering manoeuvres with external disturbance to evaluate its performance in different scenarios. The performance of the proposed controller is compared to conventional Proportional Integration and Derivative (PID) for effectiveness analysis.


2015 ◽  
Vol 72 (2) ◽  
Author(s):  
Liyana Ramli ◽  
Yahaya Md. Sam ◽  
Zaharuddin Mohamed ◽  
M. Khairi Aripin ◽  
M. Fahezal Ismail

The purpose of controlling the vehicle handling is to ensure that the vehicle is in a safe condition and following its desire path. Vehicle yaw rate is controlled in order to achieve a good vehicle handling. In this paper, the optimal Composite Nonlinear Feedback (CNF) control technique is proposed for an Active Front Steering (AFS) system for improving the vehicle yaw rate response. The model used in order to validate the performance of controller is nonlinear vehicle model with 7 degree-of-freedom (DOF) and a bicycle model is implemented for the purpose of designing the controller. In designing an optimal CNF controller, the parameter estimation of linear and nonlinear gain becomes very important to produce the best output response. An intelligent algorithm is designed to minimize the time consumed to get the best parameter. To design an optimal method, Multi Objective Particle Swarm Optimization (MOPSO) is utilized to optimize the CNF controller performance. As a result, transient performance of the yaw rate has improved with the increased speed of in tracking and searching of the best optimized parameter estimation for the linear and the nonlinear gain of CNF controller.  


2016 ◽  
Vol 39 (3) ◽  
pp. 352-360 ◽  
Author(s):  
Xiaoyan Lin ◽  
Dongyun Lin ◽  
Weiyao Lan

The semi-global output regulation problem of multi-variable discrete-time singular linear systems with input saturation is investigated in this paper. A composite nonlinear feedback control law is constructed by using a low gain feedback technique for semi-global stabilisation of discrete-time singular linear systems with input saturation. The sufficient solvability conditions of the semi-global output regulation problem by composite nonlinear feedback control are established. When the composite nonlinear feedback control law is reduced to a linear control law, the solvability conditions are an exact discrete-time counterpart of the semi-global output regulation problem of continuous-time singular linear systems. With the extra control freedom of the nonlinear part in the composite nonlinear feedback control law, the transient performance of the closed-loop system can be improved by carefully choosing the linear feedback gain and the nonlinear feedback gain. The design procedure of the composite nonlinear feedback control law and the improvement of the transient performance are illustrated by a numerical example.


2014 ◽  
Vol 80 (1-2) ◽  
pp. 363-374 ◽  
Author(s):  
Weiping Wang ◽  
Lixiang Li ◽  
Haipeng Peng ◽  
Jürgen Kurths ◽  
Jinghua Xiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document