Model Predictive Control Based Path Following of an Amphibious Robot

Author(s):  
Dongyue Li ◽  
Jie Pan ◽  
Jincun Liu ◽  
Ming Wang ◽  
Junzhi Yu
Author(s):  
Yuan Zou ◽  
Ningyuan Guo ◽  
Xudong Zhang

This article proposes an integrated control strategy of autonomous distributed drive electric vehicles. First, to handle the multi-constraints and integrated problem of path following and the yaw motion control, a model predictive control technique is applied to determine optimal front wheels’ steering angle and external yaw moment synthetically and synchronously. For ensuring the desired path-tracking performance and vehicle lateral stability, a series of imperative state constraints and control references are transferred in the form of a matrix and imposed into the rolling optimization mechanism of model predictive control, where the detailed derivation is also illustrated and analyzed. Then, the quadratic programming algorithm is employed to optimize and distribute each in-wheel motor’s torque output. Finally, numerical simulation validations are carried out and analyzed in depth by comparing with a linear quadratic regulator–based strategy, proving the effectiveness and control efficacy of the proposed strategy.


Author(s):  
Mohammad Ghassem Farajzadeh-Devin ◽  
Seyed Kamal Hosseini Sani

In this paper, output tracking of a geometric path for a nonlinear uncertain system with input and state constraints is considered. We propose an enhanced two-loop model predictive control approach for output tracking of a nonlinear uncertain system. Additionally, we propose an optimal version of output path following control problem to improve the controller synthesis. Satisfaction of the dynamical constraints of a system such as velocity, acceleration and jerk limitations is added to the problem introducing a new augmented system. The recursive feasibility of the proposed method is demonstrated, and its robust stability is guaranteed such that relaxation on the terminal constraint and penalty are achieved. To validate the theoretical benefits of the proposed controller, it is simulated on a SCARA robot manipulator and the results are compared with a two-loop model predictive controller successfully.


Sign in / Sign up

Export Citation Format

Share Document