Route optimization of sea test for acoustic countermeasure based on genetic algorithm

Author(s):  
Yingchun Chen ◽  
Mingxu Sui
2015 ◽  
Vol 11 (9) ◽  
pp. 4 ◽  
Author(s):  
Wei Liu ◽  
Yongfeng Cui ◽  
Zhongyuan Zhao

The objective of this paper is focuses on route optimization, for a given wireless sensor network. We detail the significance of route optimization problem and the corresponding mathematical model. After analyzing the complex multi-objective optimization problem, Ant Colony Optimization (ACO) algorithm was introduced to search the best route. Inspired by Genetic Algorithm (GA), we embed two operations into ACO to refine it. First, every ant after achieving sink will be regarded as an individual such as that in GA. The crossover operation will be applied and then, the generated new ants will replace the weaker parents. Second, we designed a mutation operation for ants selecting next nodes to visit. Experimental results demonstrate that the proposed combination algorithm has significant enhancements than both GA and ACO. The lifetime of WSN can be extended and the coverage speed can be accelerated.


Author(s):  
Yukiko Yamamoto ◽  
Takashi Kawabe ◽  
Yuuki Kobayashi ◽  
Setsuo Tsuruta ◽  
Yoshitaka Sakurai ◽  
...  

2012 ◽  
Vol 170-173 ◽  
pp. 3695-3698
Author(s):  
Jun Ma ◽  
Li Ying Zhang

The vehicle routing planning in the process of logistics is a hot issue. There is a lack of traditional genetic algorithm used to solve this issue, so the taboos is introduced to improve it. The improved genetic algorithm based on taboos get high-search speed compared to the traditional genetic algorithm, and this improvement is verified by the example.


2015 ◽  
Vol 72 ◽  
pp. 503-510 ◽  
Author(s):  
Amalia Utamima ◽  
K. Renny Pradina ◽  
Nisa Setya Dini ◽  
Hudan Studiawan

2015 ◽  
Vol 713-715 ◽  
pp. 1761-1764
Author(s):  
Feng Kai Xu

In order to achieve a low cost and low exhaust pollution in logistics distribution path. In view of the shortages of existing genetic algorithm and ant colony algorithm which have the characteristics of some limitations, such as ant colony algorithm's convergence slow, easy going, the characteristics of such as genetic algorithm premature convergence in the process of path optimization, process complex, the paper proposed the improved artificial fish swarm algorithm in order to solve logistics route optimization problem. At last, through simulation experiment, the improved artificial fish swarm algorithm is proved correct and effective.


Author(s):  
Koushik Majumder ◽  
Debashis De ◽  
Senjuti Kar ◽  
Rani Singh

Mobile Ad hoc Networks (MANET) are wireless infrastructure less networks that are formed spontaneously and are highly dynamic in nature. Clustering is done in MANETs to address issues related to scalability, heterogeneity and to reduce network overhead. In clustering the entire network is divided into clusters or groups with one Cluster Head (CH) per cluster. The process of CH selection and route optimization is extremely crucial in clustering. Genetic Algorithm (GA) can be implemented to optimize the process of clustering in MANETs. GA is the most recently used advanced bio-inspired optimization technique which implements techniques of genetics like selection, crossover, mutation etc. to find out an improved solution to a problem similar to the next generation that inherits the positive traits and features of the previous one. In this chapter several genetic algorithm based optimization techniques for clustering has been discussed. A comparative analysis of the different approaches has also been presented. This chapter concludes with future research directions in this domain.


2021 ◽  
Author(s):  
Subrata Bhowmik

Abstract Optimal route selection for the subsea pipeline is a critical task for the pipeline design process, and the route selected can significantly affect the overall project cost. Therefore, it is necessary to design the routes to be economical and safe. On-bottom stability (OBS) and fixed obstacles like existing crossings and free spans are the main factors that affect the route selection. This article proposes a novel hybrid optimization method based on a typical Machine Learning algorithm for designing an optimal pipeline route. The proposed optimal route design is compared with one of the popular multi-objective optimization method named Genetic Algorithm (GA). The proposed pipeline route selection method uses a Reinforcement Learning (RL) algorithm, a particular type of machine learning method to train a pipeline system that would optimize the route selection of subsea pipelines. The route optimization tool evaluates each possible route by incorporating Onbottom stability criteria based on DNVGL-ST-109 standard and other constraints such as the minimum pipeline route length, static obstacles, pipeline crossings, and free-span section length. The cost function in the optimization method simultaneously handles the minimization of length and cost of mitigating procedures. Genetic Algorithm, a well established optimization method, has been used as a reference to compare the optimal route with the result from the proposed Reinforcement Learning based optimization method. Three different case studies are performed for finding the optimal route selection using the Reinforcement Learning (RL) approach considering the OBS criteria into its cost function and compared with the Genetic Algorithm (GA). The RL method saves upto 20% pipeline length for a complex problem with 15 crossings and 31 free spans. The RL optimization method provides the optimal routes, considering different aspects of the design and the costs associated with the various factors to stabilize a pipeline (mattress, trenching, burying, concrete coating, or even employing a more massive pipe with additional steel wall thickness). OBS criteria significantly influence the best route, indicating that the tool can reduce the pipeline's design time and minimize installation and operational costs of the pipeline. Conventionally the pipeline route optimization is performed by a manual process where the minimum roule length and static obstacles are considered to find an optimum route. The engineering is then performed to fulfill the criteria of this route, and this approach may not lead to an optimized engineering cost. The proposed Reinforced Learning method for route optimization is a mixed type, faster, and cost-efficient approach. It significantly minimizes the pipeline's installation and operational costs up to 20% of the conventional route selection process.


Sign in / Sign up

Export Citation Format

Share Document