Genetic-Algorithm-Based Optimization of Clustering in Mobile Ad Hoc Network

Author(s):  
Koushik Majumder ◽  
Debashis De ◽  
Senjuti Kar ◽  
Rani Singh

Mobile Ad hoc Networks (MANET) are wireless infrastructure less networks that are formed spontaneously and are highly dynamic in nature. Clustering is done in MANETs to address issues related to scalability, heterogeneity and to reduce network overhead. In clustering the entire network is divided into clusters or groups with one Cluster Head (CH) per cluster. The process of CH selection and route optimization is extremely crucial in clustering. Genetic Algorithm (GA) can be implemented to optimize the process of clustering in MANETs. GA is the most recently used advanced bio-inspired optimization technique which implements techniques of genetics like selection, crossover, mutation etc. to find out an improved solution to a problem similar to the next generation that inherits the positive traits and features of the previous one. In this chapter several genetic algorithm based optimization techniques for clustering has been discussed. A comparative analysis of the different approaches has also been presented. This chapter concludes with future research directions in this domain.

This research paper proposes the “mobile ad hoc networks (MANETs) need aid autonomously self-organized networks without framework backing”. For a “mobile ad hoc network, nodes move arbitrarily”; consequently that network might background fast also random topology changes.In view nodes previously, a MANET regularly have set transmission ranges, a percentage node can't correspond specifically with one another. Hence, routing path in mobile networks possibly hold numerous hops, each hub to mobile networks need the obligation on go about as a switch. This paper is an review from research work on “routing protocol for MANET, Mobile Ad Hoc Network” has as of late increased a ton of fame among computer researchers and specialists. “A MANET is an infrastructure less network” with a lot of dynamic, versatile and self-arranging hubs. Intrigue and utilization of remote versatile network have been becoming in the course of the most recent couple of years.MANETs to have a productive multicast directing and a Quality of Service (QoS) component.Multicast for Ad hoc Network with Hybrid Swarm Intelligence convention depends on swarm insight based optimization technique.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Khalid Hussain ◽  
Abdul Hanan Abdullah ◽  
Saleem Iqbal ◽  
Khalid M. Awan ◽  
Faraz Ahsan

In mobile ad hoc network (MANET) cluster head selection is considered a gigantic challenge. In wireless sensor network LEACH protocol can be used to select cluster head on the bases of energy, but it is still a dispute in mobil ad hoc networks and especially when nodes are itinerant. In this paper we proposed an efficient cluster head selection algorithm (ECHSA), for selection of the cluster head efficiently in Mobile ad hoc networks. We evaluate our proposed algorithm through simulation in OMNet++ as well as on test bed; we experience the result according to our assumption. For further evaluation we also compare our proposed protocol with several other protocols like LEACH-C and consequences show perfection.


Author(s):  
Manoj Kumar, Et. al.

Temporary connection failures and route changes happen in a Mobile Ad Hoc Network (MANET). MANET enjoys extensive variety of applications like in tactical networks, Sensor networks. Much battery backup is required while tuning a node that is far from the sender node While compared to the node which is near in respect to sender, In this paper we are proposing an approach of optimized utilization of battery backup in MANET Battery Backup is a main constraint in mobile ad hoc networks Most of the battery is wasted in tuning to the networks repeatedly there by making the mobile node vulnerable to Jail. This paper emphasize on proper utilization of battery backup by varying the signal strength according the distance of the nodes. Modified FireFly Algorithm (MFFA) is greatly utilized in this research for boosting up of battery backup. The cluster head should maintain a table for battery backup and decision of task distribution will be based on this table.


2017 ◽  
Vol 2 (7) ◽  
pp. 5-8
Author(s):  
Neeraj Verma ◽  
Kuber Mohan

Energy is a critical issue in Mobile Ad-hoc Network. Nodes in Network are working in presence of limited or less energy due to dynamic nature of nodes or infrastructure less network. MANET has no infrastructure so nodes in MANET work on dynamic routing. In this way, energy proficient routing is required for reducing energy utilization. Energy proficient routing plans can extraordinarily reduce energy utilization and augments the lifetime of the networks. Scalability of Ad Hoc Networks can be enhanced by using land data, for example, in LAR, GPSR etc. They utilize physical area data; regularly from GPS (Global Positioning System).GPS empowers a gadget to decide their position as in longitude, Latitude and Altitude by getting this data from the satellites. There has been significant effort in proposing energy efficient routing protocols with the help of GAGAN (GPS Aided GEO Augmented Navigation) which have accuracy to approx One meter in India or its neighbor countries. GAGAN is a route framework which is helped by both GPS and nearby telemetry information to possibly give quicker and more exact situating and navigational information.


2011 ◽  
Vol 403-408 ◽  
pp. 2415-2419 ◽  
Author(s):  
Yuan Ming Ding ◽  
Chang Hong Sun ◽  
Lin Song ◽  
Wan Qi Kong

Simulation environment of the mobile Ad Hoc network is built by applying NS2 simulation software. The simulation data indicates that AODV routing protocol is better than DSDV in throughput, fairness and stability. In the underwater network environment where the nodes are in Low-Speed movement, the data transfer rate of AODV routing protocol is higher than AOMDV. To a certain extent, AODV is more suitable for application in underwater environments.


2021 ◽  
Author(s):  
Altaf Hussain ◽  
Muhammad Rafiq Khan

Abstract Mobile Ad-hoc Network (MANET) is the most emerging and fast expanding technology since the last two decades. One of the major issue and challenging area in MANET is the process of routing due to dynamic topologies and high mobility of mobile nodes. The exchange of information from source to a destination is known as the process of routing. Spectacular amount of attention has been paid by researchers to reliable routing in ad-hoc networks. Efficiency and accuracy of a protocol depends on many parameters in these networks. In addition to other parameters node velocity and propagation models are among them. Calculating signal strength at receiver is the responsibility of a propagation model while mobility of nodes is responsible for topology of the network. A huge amount of loss in performance is occurred due to variation of signal strength at receiver and obstacles between transmissions. Simulation tools are developed to analyze the weakness and strength of protocols along with different parameters that may impact the performance. The choice of a propagation models have an abundant effect on performance on routing protocols in MANET. In this research, it has been analyzed to check the impact of different propagation models on the performance of Optimized Link State Routing (OLSR) in Sparse and Dense scenarios in MANET. The simulation has been carried out in NS-2 by using performance metrics as average Throughput, average packet drop and average latency. The results predicted that propagation models and mobility has a strong impact on the performance of OLSR in considered scenarios.


2012 ◽  
Vol 224 ◽  
pp. 520-523
Author(s):  
Hyun Jong Cha ◽  
Jin Mook Kim ◽  
Hwang Bin Ryou

A mobile ad-hoc network is a method of communication between different nodes (mobile devices) without the use of base stations, which are used in wired networks. In a Mobile ad-hoc network, nodes can play the role of a receiver, sender, or a relay. As movement is flexible in Mobile ad-hoc networks and nodes have limited resources, nodes may join the communication or exit it at any time. Therefore, for Mobile ad-hoc networks, routing techniques - selecting communication routes and maintaining them – is considered important in an environment of constantly changing network topology. To overcome this problem, this paper proposes a reliable routing protocol based on MP-AOMDV, which monitors changes in signal strength not only for GPS signals but reception signals as well. Although MP-AOMDV was researched under the assumption of fixed movement direction and speed, this paper proposes a routing technique that works with changing movement direction or speed of nodes.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Huang Qiong ◽  
Yin Pengfei ◽  
Chen Qianbin ◽  
Gong Pu ◽  
Yang Xiaolong

Traditional mobile Ad Hoc network routing protocols are mainly based on the Shortest Path, which possibly results in many congestion nodes that incur routing instability and rerouting. To mitigate the side-efforts, this paper proposed a new bioinspired adaptive routing protocol (ATAR) based on a mathematics biology model ARAS. This paper improved the ARAS by reducing the randomness and by introducing a new routing-decision metric “the next-hop fitness” which was denoted as the congestion level of node and the length of routing path. In the route maintenance, the nodes decide to forward the data to next node according to a threshold value of the fitness. In the recovery phase, the node will adopt random manner to select the neighbor as the next hop by calculation of the improved ARAS. With this route mechanism, the ATAR could adaptively circumvent the congestion nodes and the rerouting action is taken in advance. Theoretical analysis and numerical simulation results show that the ATAR protocol outperforms AODV and MARAS in terms of delivery ratio, ETE delay, and the complexity. In particular, ATAR can efficiently mitigate the congestion.


Author(s):  
DWEEPNA GARG ◽  
PARTH GOHIL

A Mobile Ad-Hoc Network (MANET) is a collection of wireless mobile nodes forming a temporary network without using centralized access points, infrastructure, or centralized administration. Routing means the act of moving information across an internet work from a source to a destination. The biggest challenge in this kind of networks is to find a path between the communication end points, what is aggravated through the node mobility. In this paper we present a new routing algorithm for mobile, multi-hop ad-hoc networks. The protocol is based on swarm intelligence. Ant colony algorithms are a subset of swarm intelligence and consider the ability of simple ants to solve complex problems by cooperation. The introduced routing protocol is well adaptive, efficient and scalable. The main goal in the design of the protocol is to reduce the overhead for routing. We refer to the protocol as the Ant Colony Optimization Routing (ACOR).


Sign in / Sign up

Export Citation Format

Share Document