Consensusability of Continuous-time Multi-agent Systems With Multiplicative Noises

Author(s):  
Cuiyun Qu ◽  
Zhongmei Wang
2013 ◽  
Vol 278-280 ◽  
pp. 1687-1691
Author(s):  
Tong Qiang Jiang ◽  
Jia Wei He ◽  
Yan Ping Gao

The consensus problems of two situations for singular multi-agent systems with fixed topology are discussed: directed graph without spanning tree and the disconnected undirected graph. A sufficient and necessary condition is obtained by applying the stability theory and the system is reachable asymptotically. But for normal systems, this can’t occur in upper two situations. Finally a simulation example is provided to verify the effectiveness of our theoretical result.


Author(s):  
Ronen Nir ◽  
Erez Karpas

Designing multi-agent systems, where several agents work in a shared environment, requires coordinating between the agents so they do not interfere with each other. One of the canonical approaches to coordinating agents is enacting a social law, which applies restrictions on agents’ available actions. A good social law prevents the agents from interfering with each other, while still allowing all of them to achieve their goals. Recent work took the first step towards reasoning about social laws using automated planning and showed how to verify if a given social law is robust, that is, allows all agents to achieve their goals regardless of what the other agents do. This work relied on a classical planning formalism, which assumed actions are instantaneous and some external scheduler chooses which agent acts next. However, this work is not directly applicable to multi-robot systems, because in the real world actions take time and the agents can act concurrently. In this paper, we show how the robustness of a social law in a continuous time setting can be verified through compilation to temporal planning. We demonstrate our work both theoretically and on real robots.


Sign in / Sign up

Export Citation Format

Share Document