Semi-active Suspension Control Strategy of High-speed Train Based on Second-order Sliding Mode

Author(s):  
Xinyue Wang ◽  
Deqing Huang
Author(s):  
Chih-Jer Lin ◽  
Wan-Quan Xu

This paper presents a complete analysis of the cruise control and the active suspension control for the high speed train (HST). For a train system, the system are designed to being safe and reliable with high efficiency and fault tolerance; however, users require faster, more stable and more comfort transportation. To make sure the safety at such high speed, automatic train control (ATC) is needed and used for the modern HST to guarantee the safety and monitor the cruise status. For HST, the conventional (passive) suspension techniques have reached the limit of its optimization and development; therefore, the active suspension system is necessary for HST to obtain better comfort. In this paper, the extended sliding mode control is studied and applied to the cruise and active suspension of the HST.


2021 ◽  
Vol 14 (1) ◽  
pp. 484-495
Author(s):  
Rania Moutchou ◽  
◽  
Ahmed Abbou ◽  
Salah Rhaili ◽  
◽  
...  

This paper presents a modelling study and focuses on an advanced higher order slip mode control strategy (Super Twisting Algorithm) for a variable speed wind turbine based on a permanent magnet synchronous generator to capture the maximum possible wind power from the turbine while simultaneously reducing the effect of mechanical stress, powered by a voltage inverter and controlled by vector PWM technique. This paper presents first and second order sliding mode control schemes. On the other hand, a challenging matter of pure SMC of order one can be summed up in the produced chattering phenomenon. In this work, this issue has been mitigated by implementing a new control. The proposed control, characterized by a precision in the case of a continuation of a significant reduction of the interference phenomenon, successfully addresses the problems of essential non-linearity of wind turbine systems. This type of control strategy presents more advanced performances such as behaviour without chattering (no additional mechanical stress), excellent convergence time, robustness in relation to external disturbances (faults in the network) and to non-modelled dynamics (generator and turbine) which have been widely used in power system applications by first order sliding mode control. In particular, second-order sliding regime control algorithms will be applied to the PMSG to ensure excellent dynamic performance. The suggested control is compared to the proportional-integral controller and sliding mode control of order one. The results of simulations under turbulent wind speed and parameter variations show the efficiency, robustness and significantly improved performance of the proposed control approach to distinguish and track quickly (about 10ms depending on the shading pattern) and at the same time saving the main priorities of the sliding mode of order one by reducing the existing chatter. The systems performances were tested and compared using Matlab/Simulink Software.


Author(s):  
Jinwei Sun ◽  
JingYu Cong ◽  
Liang Gu ◽  
Mingming Dong

As the possibility of faults in active suspension actuators are higher and more severe compared to other components, this study presents a fault-tolerant control approach based on the second-order sliding mode control method. The aim of the controller is to improve riding comfort, guarantee handling stability, and provide adequate suspension stroke in the presence of disturbances and actuator faults. A nonlinear full-vehicle suspension system and hydraulic actuator with nonlinear characteristics are adopted for accurate control. Firstly, a nonlinear sliding manifold based on a nonsingular fast terminal sliding mode controller is introduced to suppress the sprung mass heave, pitch, and roll motions arising from road disturbances. Secondly, a second-order sliding mode-based super twisting controller is utilized to track the desired forces generated by the nonsingular fast terminal sliding mode controller with actuator faults and uncertainties. The controllers are robust against disturbances, uncertainties, and faults. Moreover, the stability of the super twisting controller is proved by the strong Lyapunov functions. Finally, numerical simulations are performed to demonstrate the effectiveness of the controller. Four different conditions, random road profile, bump road excitation, single-wheel bump excitation, and partial faults are considered. The main contributions of this study are: (1) combination of the above algorithms to deal with actuator faults and improve active suspension performance; (2) the controller proposed in this study has a simple structure. Simulation results indicate that the nonsingular fast terminal sliding mode super twisting controller can guarantee the performance of the closed-loop system under both faulty and healthy conditions.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Zhihong Wang ◽  
Yifei Wu ◽  
Wei Chen ◽  
Xiang Wang ◽  
Jian Guo ◽  
...  

Considering the varying inertia and load torque in high speed and high accuracy servo systems, a novel discrete second-order sliding mode adaptive controller (DSSMAC) based on characteristic model is proposed, and a command observer is also designed. Firstly, the discrete characteristic model of servo systems is established. Secondly, the recursive least square algorithm is adopted to identify time-varying parameters in characteristic model, and the observer is applied to predict the command value of next sample time. Furthermore, the stability of the closed-loop system and the convergence of the observer are analyzed. The experimental results show that the proposed method not only can adapt to varying inertia and load torque, but also has good disturbance rejection ability and robustness to uncertainties.


Sign in / Sign up

Export Citation Format

Share Document