Parameter identification for PMSM based on varying forgetting factor multi-innovation stochastic gradient identification algorithm

Author(s):  
Wu Dinghui ◽  
Zhang Jianyu ◽  
Huang Xu ◽  
Ji Zhicheng
2021 ◽  
pp. 1-9
Author(s):  
Baigang Zhao ◽  
Xianku Zhang

Abstract To solve the problem of identifying ship model parameters quickly and accurately with the least test data, this paper proposes a nonlinear innovation parameter identification algorithm for ship models. This is based on a nonlinear arc tangent function that can process innovations on the basis of an original stochastic gradient algorithm. A simulation was carried out on the ship Yu Peng using 26 sets of test data to compare the parameter identification capability of a least square algorithm, the original stochastic gradient algorithm and the improved stochastic gradient algorithm. The results indicate that the improved algorithm enhances the accuracy of the parameter identification by about 12% when compared with the least squares algorithm. The effectiveness of the algorithm was further verified by a simulation of the ship Yu Kun. The results confirm the algorithm's capacity to rapidly produce highly accurate parameter identification on the basis of relatively small datasets. The approach can be extended to other parameter identification systems where only a small amount of test data is available.


Author(s):  
Xianku Zhang ◽  
Baigang Zhao ◽  
Guoqing Zhang

Abstract This paper investigates the problem of parameter identification for ship nonlinear Nomoto model with small test data, a nonlinear innovation-based identification algorithm is presented by embedding sigmoid function in the stochastic gradient algorithm. To demonstrate the validity of the algorithm, an identification test is carried out on the ship ‘SWAN’ with only 26 sets of test data. Furthermore, the identification effects of the least squares algorithm, original stochastic gradient algorithm and the improved stochastic gradient algorithm based on nonlinear innovation are compared. Generally, the stochastic gradient algorithm is not suitable for the condition of small test data. The simulation results indicate that the improved stochastic gradient algorithm with sigmoid function greatly increases its accuracy of parameter identification and has 14.2% up compared with the least squares algorithm. Then the effectiveness of the algorithm is verified by another identification test on the ship ‘Galaxy’, the accuracy of parameter identification can reach more than 95% which can be used in ship motion simulation and controller design. The proposed algorithm has advantages of the small test data, fast speed and high accuracy of identification, which can be extended to other parameter identification systems with less sample data.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3180 ◽  
Author(s):  
Bizhong Xia ◽  
Rui Huang ◽  
Zizhou Lao ◽  
Ruifeng Zhang ◽  
Yongzhi Lai ◽  
...  

The model parameters of the lithium-ion battery are of great importance to model-based battery state estimation methods. The fact that parameters change in different rates with operation temperature, state of charge (SOC), state of health (SOH) and other factors calls for an online parameter identification algorithm that can track different dynamic characters of the parameters. In this paper, a novel multiple forgetting factor recursive least square (MFFRLS) algorithm was proposed. Forgetting factors were assigned to each parameter, allowing the algorithm to capture the different dynamics of the parameters. Particle swarm optimization (PSO) was utilized to determine the optimal forgetting factors. A state of the art SOC estimator, known as the unscented Kalman filter (UKF), was combined with the online parameter identification to create an accurate estimation of SOC. The effectiveness of the proposed method was verified through a driving cycle under constant temperature and three different driving cycles under varied temperature. The single forgetting factor recursive least square (SFFRLS)-UKF and UKF with fixed parameter were also tested for comparison. The proposed MFFRLS-UKF method obtained an accurate estimation of SOC especially when the battery was running in an environment of changing temperature.


2013 ◽  
Vol 344 ◽  
pp. 205-209
Author(s):  
Jing Bo Gao ◽  
Xiao Dan Wang ◽  
Wei Yao Zhang ◽  
Cong Wang

In this paper, two kinds of time varying parameter identification methods which are called identification method of using broken line to approximate time varying parameter and identification algorithm with auto-regulation forgetting factor are studied. The two methods are used for short-term time-varying system parameter identification in simulations. According to the results of the simulations, the applicable conditions of the two kinds of identification methods are analyzed. The results of the simulations indicate the effectiveness of the two methods. Furthermore whether the two kinds of identification methods are sensitive to noise or not is studied by setting different noise levels in the simulations. Finally, experiments of a variable mass cylindrical shell are adopted to demonstrate the efficiency of the two kinds of time varying parameter identification methods.


2018 ◽  
Vol 7 (4.36) ◽  
pp. 962
Author(s):  
Elena N. Meshcheryakova ◽  
. .

This article describes the possibility of triangulation function use for the classification, analysis and identification of complex microsystem physical object parameters. They analyzed the existing methods and identification algorithms, their advantages and disadvantages are highlighted. The existing methods of triangulation are considered, the possibility of Delaunay triangulation is described for surfactant signal 3-D model development and analysis. They developed the algorithm to identify the state of an object using the triangulation function that takes into account the change of node coordinates and the length of the triangulation grid edges. They presented the visual UML model. The conclusions are drawn about the possibility of triangulation function use for the analysis of complex microsystem state.  


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Jing Chen ◽  
Ruifeng Ding

This paper presents two methods for dual-rate sampled-data nonlinear output-error systems. One method is the missing output estimation based stochastic gradient identification algorithm and the other method is the auxiliary model based stochastic gradient identification algorithm. Different from the polynomial transformation based identification methods, the two methods in this paper can estimate the unknown parameters directly. A numerical example is provided to confirm the effectiveness of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document