temperature state
Recently Published Documents


TOTAL DOCUMENTS

233
(FIVE YEARS 53)

H-INDEX

19
(FIVE YEARS 1)

2022 ◽  
Vol 1 (1) ◽  
pp. 63-71
Author(s):  
Vladimir Pryadkin ◽  
Artem Artemov ◽  
Pavel Kolyadin ◽  
A. Kolcov

The article presents a mathematical model of the destructive effect of a wide-profile tire on the roadway. The mathematical model makes it possible to adequately reproduce the effect of a wide-profile tire on the road surface, taking into account the load and parameters of the tire, as well as the structure of the road surface and the temperature state.


Author(s):  
Kota Kataoka ◽  
Daigorou Hirai ◽  
Akihiro Koda ◽  
Ryosuke Kadono ◽  
Takashi Honda ◽  
...  

Abstract Semimetallic osmium pyrochlore oxide Cd2Os2O7 undergoes a magnetic transition to an all-in-all-out (AIAO)-type order at 227 K, followed by a crossover to an AIAO insulator at around 210 K. Here, we studied the isostructural and isoelectronic compound Hg2Os2O7 through thermodynamic measurements, µSR spectroscopy and neutron diffraction experiments. A similar magnetic transition, probably to an AIAO-type order, was observed at 88 K, while the resistivity showed a decrease at the transition and remained metallic down to 2 K. Thus, the ground state of Hg2Os2O7 is most likely an AIAO semimetal, which is analogous to the intermediate-temperature state of Cd2Os2O7. Hg2Os2O7 exists on the verge of the metal–insulator boundary on the metal side and provides an excellent platform for studying the electronic instability of 5d electrons with moderate electron correlations and strong spin–orbit interactions.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 610
Author(s):  
Joseph Tindall ◽  
Frank Schlawin ◽  
Michael Sentef ◽  
Dieter Jaksch

Coherent driving has established itself as a powerful tool for guiding a many-body quantum system into a desirable, coherent non-equilibrium state. A thermodynamically large system will, however, almost always saturate to a featureless infinite temperature state under continuous driving and so the optical manipulation of many-body systems is considered feasible only if a transient, prethermal regime exists, where heating is suppressed. Here we show that, counterintuitively, in a broad class of lattices Floquet heating can actually be an advantageous effect. Specifically, we prove that the maximum entropy steady states which form upon driving the ground state of the Hubbard model on unbalanced bi-partite lattices possess uniform off-diagonal long-range order which remains finite even in the thermodynamic limit. This creation of a `hot' condensate can occur on any driven unbalanced lattice and provides an understanding of how heating can, at the macroscopic level, expose and alter the order in a quantum system. We discuss implications for recent experiments observing emergent superconductivity in photoexcited materials.


Author(s):  
N.O. Borschev ◽  
O.A. Yuranev

Russian enterprises continue developing rocket and space vehicles based on cryogenic propellants, i.e. liquid hydrogen, oxygen, and methane. Hence, the issues of fuel tanks’ thermal strength are increasingly important. During structural tests, the operating temperatures of the test object should be simulated, since the temperature condition affects the strength and rigidity of the structure. Consequently, during ground-based experimental tests, hydrogen tanks must be cooled down to 20 K, the boiling point of hydrogen. JSC TsNIIMash is developing a helium system capable of cooling large-sized structures to a temperature of 20 K. Helium can be used in a gaseous state to cool down the structure, since the boiling point of helium, 4 K, is lower than the boiling point of hydrogen. Until now, the tanks were cooled only by filling with liquid nitrogen, therefore the temperature state of the tanks during the tests was simulated only for this case. In order to determine the applicability of the method developed, the cooling time of large-sized containers was estimated by cooling a hydrogen tank, which by its dimensions is typical for an advanced medium-class second stage launcher, to 20 K by gaseous helium.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012090
Author(s):  
A V Eremin ◽  
K V Gubareva ◽  
A I Popov

Abstract This article presents the results of the development of a numerical - analytical method for solving the problem of thermal conductivity in a plate fuel element. An unsteady temperature field inside a fuel element is investigated for a given spatial distribution of heat sources. The heat release rate is given by the quadratic function of the coordinate. Modeling the temperature state of bodies with internal heat sources allows you to study the operation of equipment in transient modes, control heating/cooling modes of elements, determine temperature stresses, etc. It is shown in the work that regardless of the power of internal sources of heat, the temperature state is stabilized at a temperature level that depends on the Pomerantsev number.


Author(s):  
D. Geringer ◽  
P. Hofmann ◽  
J. Girard ◽  
E. Trunner ◽  
W. Knefel

AbstractThis paper focuses on the battery aging of automotive high power lithium-ion batteries intended for 48 V mild hybrid systems. Due to a long vehicle lifetime, battery aging is of high importance, and its consideration within a hybrid system is crucial to ensure a sufficient lifetime for the battery. At the moment, only a few aging investigations and models specifically for automotive high power cells are available. Consequently, all present aging consideration methods are based on the few published aging models focusing on consumer cells. This paper describes the development of an aging model for automotive high power cells and the integration into a mild hybrid operating strategy to actively control the battery aging process during its operation. The underlying aging investigations of high-power battery cells are shown to analyze the main influences of temperature, state of charge, and C-rate. These tests are used to develop the aging model, capable of considering the main influences on the aging process. Based on this model and all gained insights, different methods for considering battery aging in a mild hybrid system are investigated. The goal is to control the aging process during operation and consequently decrease the negative influence. Two active intervention methods are developed and integrated into a 48 V mild hybrid operating strategy to validate their potential. It is possible to control the aging process and at the same time to use the insights for improving the basic hybrid powertrain design regarding reduced aging and battery costs.


2021 ◽  
Vol 3 (56) ◽  
pp. 61-69
Author(s):  
Vladimir E. ANTONYUK ◽  
◽  
Sergey O. NIKIFOROVICH ◽  
Victor V. RUDII ◽  
◽  
...  

Features and requirements to the use of reheating of ring blanks in the conditions of production on the automated line are considered. An assessment is given for a technological temperature state of ring blanks at various stages of production under conditions of the automated line. For assessment of rational for reheating at production of ring blanks, a classification of ring manufacturing technology is proposed with the production of a pressed non-core blank in an open die, with the production of a pressed profile blank in a closed die, with the production of a pressed profile blank in a stamp with reverse extrusion. The technology of ring rolling with the production of a pressed non-core blank in an open die is the most economical and does not require the use of reheating in the manufacture of rings made of medium-alloy steels. The technology of ring rolling of a profile blank obtained in a closed die does not require the use of additional heating after pressing, in the case of manufacturing rings with a simplified profile on the outer or inner diameters of the ring. In the manufacture of rings with a more complex profile on the outer and inner diameters of the ring, as well as rings made of high-alloy steels, the final decision on the need for additional heating is made depending on the temperature of the end of intensive plastic deformation for the selected steel grade of the ring. The technology of ring rolling with the production of a pressed profile blank in a die with reverse extrusion requires the use of reheating after the pressing operation before the ring rolling operation, and is recommended for the manufacture of rings from medium- and high-alloy steels with a complex profile section on the outer and inner diameters, wall thicknesses, with a ratio of wall thickness to outer diameter D within h / D = 0.011...0.016 and with a ratio of wall thickness to ring height L within h / L = 0.020...0.041. The proposed recommendations are intended for use in the development of technological support for the operation of the automated ring-rolling complex at OJSC “BELAZ”.


Author(s):  
Az.A. Aliev ◽  
A.S. Burkov ◽  
V.A. Tovstonog ◽  
V.I. Tomak ◽  
D.A. Yagodnikov

One of the features of high-velocity atmospheric aircraft is the presence of thin aerofoils with edges characterised by a small blunt radius, subjected to high-temperature aerodynamic heating at temperatures of up to 2000 -- 2500 °C. In order to ensure correct operation of both the power plant producing thrust in such vehicles, assumed to be a supersonic combustion ramjet, and respective aerodynamic controls, the components subjected to high-velocity air flows must retain their geometric stability. A way to ensure their performance is to use methods and means of thermal protection, as well as materials that are resistant to high temperatures in an oxidising atmosphere, while one of the promising trends is employing refractory oxide materials such as oxides of aluminium, zirconium and hafnium. Since this class of materials has low thermal conductivity, large temperature gradients develop in the vicinity of the surface being heated, resulting in temperature stresses, all of which designers should take into account. We analysed the temperature state in a model of an acute zirconium oxide wedge featuring a small blunt radius, subjected to a high-velocity air flow. To reduce the edge temperature and temperature gradients, we propose a design solution implemented as a thermally conductive core lined with a thin layer of zirconium oxide. We consider using aluminium oxide and hafnium boride as core materials


Author(s):  
V.S. Zarubin ◽  
G.N. Kuvyrkin ◽  
I.Yu. Savelyeva

For the reliable operation of a high-voltage DC cable with high-temperature superconducting current-carrying conductors with a sufficiently high difference in electrical potentials, it is necessary to maintain a fixed temperature state not only of the conductors but also of other cable elements, including the electrical insulation layer. In this layer, despite the high electrical resistivity of its material, which can be polymer dielectrics, Joule heat is released. The purpose of this study was to build a mathematical model that describes the temperature state of an electrical insulation layer made in the form of a long hollow circular cylinder, on the surfaces of which a constant potential difference of the electric field is set. Within the study, we consider an alternative design of a cable with central and external annular channels for cooling liquid nitrogen. Using a mathematical model, we obtained integral relations that connect the parameters of the temperature state of this layer, the conditions of heat transfer on its surfaces, and the temperature-dependent coefficient of thermal conductivity and electrical resistivity of an electrical insulating material with a given difference in electrical potentials. A quantitative analysis of integral relations is carried out as applied to the layer of electrical insulation of the superconducting cable. The results of the analysis make it possible to assess the possibilities of using specific electrical insulating materials in cooled high-voltage DC cables under design, including superconducting cables cooled with liquid nitrogen


Sign in / Sign up

Export Citation Format

Share Document