Key Factors Analysis of Cascading Failure Propagation in Power Grids

Author(s):  
Shaoqing Xi ◽  
Xuemin Zhang ◽  
Zhiyuan Ma ◽  
Xiaohui Qin
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Franz Kaiser ◽  
Vito Latora ◽  
Dirk Witthaut

AbstractIn our daily lives, we rely on the proper functioning of supply networks, from power grids to water transmission systems. A single failure in these critical infrastructures can lead to a complete collapse through a cascading failure mechanism. Counteracting strategies are thus heavily sought after. In this article, we introduce a general framework to analyse the spreading of failures in complex networks and demostrate that not only decreasing but also increasing the connectivity of the network can be an effective method to contain damages. We rigorously prove the existence of certain subgraphs, called network isolators, that can completely inhibit any failure spreading, and we show how to create such isolators in synthetic and real-world networks. The addition of selected links can thus prevent large scale outages as demonstrated for power transmission grids.


2011 ◽  
Vol 204-210 ◽  
pp. 1697-1700 ◽  
Author(s):  
Yu Jie Zheng

Radar EW system combat effectiveness evaluation is a essential link to Radar system Demonstration, mainly give service to selection, optimization and key factors analysis of Weapon equipment scheme. In this paper, we introduce the Bayesian network model into the area of Radar EW system combat effectiveness evaluation and put forward the concept of combat effectiveness evaluation model based on Bayesian network. The ability to express complex relationship, the ability to express the uncertainty of probability, and the reasoning functions. By learning from Expertise and Simulation data, excavating the hidden knowledge included in both of them, we can build the combat efficiency Analysis model, and then carry out efficient analysis.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1994
Author(s):  
Yanchen Liu ◽  
Minfang Peng ◽  
Xingle Gao ◽  
Haiyan Zhang

The prevention of cascading failures and large-scale power outages of power grids by identifying weak links has become one of the key topics in power systems research. In this paper, a vulnerability radius index is proposed to identify the initial fault, and a fault chain model of cascading failure is developed with probabilistic attributes to identify the set of fault chains that have a significant impact on the safe and stable operation of power grids. On this basis, a method for evaluating the vulnerability of transmission lines based on a multi-criteria decision analysis is proposed, which can quickly identify critical transmission lines in the process of cascading failure. Finally, the proposed model and method for identifying vulnerable lines during the cascading failure process is demonstrated on the IEEE-118 bus system.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 44815-44823 ◽  
Author(s):  
Renjian Pi ◽  
Ye Cai ◽  
Yong Li ◽  
Yijia Cao

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2219 ◽  
Author(s):  
Upama Nakarmi ◽  
Mahshid Rahnamay Naeini ◽  
Md Jakir Hossain ◽  
Md Abul Hasnat

Understanding and analyzing cascading failures in power grids have been the focus of many researchers for years. However, the complex interactions among the large number of components in these systems and their contributions to cascading failures are not yet completely understood. Therefore, various techniques have been developed and used to model and analyze the underlying interactions among the components of the power grid with respect to cascading failures. Such methods are important to reveal the essential information that may not be readily available from power system physical models and topologies. In general, the influences and interactions among the components of the system may occur both locally and at distance due to the physics of electricity governing the power flow dynamics as well as other functional and cyber dependencies among the components of the system. To infer and capture such interactions, data-driven approaches or techniques based on the physics of electricity have been used to develop graph-based models of interactions among the components of the power grid. In this survey, various methods of developing interaction graphs as well as studies on the reliability and cascading failure analysis of power grids using these graphs have been reviewed.


Sign in / Sign up

Export Citation Format

Share Document