Key factors analysis and constitutive equation modification of a macro-NPR bolt for achieving high constant resistance and large deformation characteristics

Author(s):  
Zhigang Tao ◽  
Senlin Luo ◽  
Yafei Qiao ◽  
Manchao He
2011 ◽  
Vol 204-210 ◽  
pp. 1697-1700 ◽  
Author(s):  
Yu Jie Zheng

Radar EW system combat effectiveness evaluation is a essential link to Radar system Demonstration, mainly give service to selection, optimization and key factors analysis of Weapon equipment scheme. In this paper, we introduce the Bayesian network model into the area of Radar EW system combat effectiveness evaluation and put forward the concept of combat effectiveness evaluation model based on Bayesian network. The ability to express complex relationship, the ability to express the uncertainty of probability, and the reasoning functions. By learning from Expertise and Simulation data, excavating the hidden knowledge included in both of them, we can build the combat efficiency Analysis model, and then carry out efficient analysis.


2013 ◽  
Vol 275-277 ◽  
pp. 16-22
Author(s):  
You Liang Xu

The constitutive equation of large deformation problem is closely related to geometric description. Nowadays, linear strain tensor is no longer unsuitable to describe large deformation. However, the existing non-linear strain tensors have complicated forms as well as no apparent geometric or physical meaning. While, the increment method is used to solve, however, convergence and efficiency are low sometimes. Thus the idea of visual strain tensor is proposed, with distinct meaning and visual image. Beside, it is likely to be used in engineering measurement, and it can be connected with measured constitutive equation directly. Thus this research provides a new idea and method for solving large-deformation problems in practical engineering.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Xiaoming Sun ◽  
Bo Zhang ◽  
Li Gan ◽  
Zhigang Tao ◽  
Chengwei Zhao

Muzhailing Highway Extra-long Tunnel in Lanzhou, Gansu Province, China, belongs to the soft rock tunnel in the extremely high geostress area. During the construction process, large deformation of the soft rock occurred frequently. Taking the no. 2 inclined shaft of Muzhailing tunnel as the research object, an NPR (negative Poisson’s ratio) constant resistance and large deformation anchor cable support system based on high prestress force, constant resistance, and releasing surrounding rock pressure was proposed. The characteristics of the surrounding rock under the steel arch support and NPR anchor cable support were compared and analyzed by using 3DEC software. A series of field tests were conducted in the no. 2 inclined shaft, and the rock strength, displacement of the surrounding rock, deep displacement of the surrounding rock, internal force of steel arch, and axial force of anchor cable were measured to study the application effect of the NPR anchor cable support system in tunnel engineering. Moreover, the 3DEC numerical simulation results were compared with the field test results. The research results show that the application of NPR constant resistance and large deformation anchor cable support system in tunnel engineering has achieved good results, and it plays a significant role in controlling the large deformation of the tunnel surrounding rock.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Zhigang Tao ◽  
Shihui Pang ◽  
Yijun Zhou ◽  
Haijiang Zhang ◽  
Yanyan Peng

A new type of energy-absorbing cable, Constant-Resistance Large Deformation cable (CRLD cable) with three different specifications, has been recently developed and tested. An effective cable should occupy the ability of absorbing deformation energy from these geodisaster loads and additionally must be able to yield with the sliding mass movements and plastic deformation over large distances at high displacement rates. The new cable mainly consists of constant-resistance casing tube and frictional cone unit that transfers the load from the slope. When experiencing a static or dynamic load and especially the load exceeding the constant resistance force (CR-F, a static friction force derived from the movement of frictional cone unit in casing tube) of CRLD cable, the frictional cone unit will move in the casing tube along the axis and absorb deformation energy, accordingly. In order to assess the performance of three different specified cables in situ, a series of field static pull tests have been performed. The results showed that the first type of CRLD cable can yield 2000 mm displacement while acting 850 kN static pull load, which is superior to that of other two types, analyzing based on the length of the displacement and the level of static pull load.


Sign in / Sign up

Export Citation Format

Share Document