Systematic Design Method for Asymmetric Multiport Antennas Based on Characteristic Modes

Author(s):  
Nikolai Peitzmeier ◽  
Dirk Manteuffel
1994 ◽  
Vol 04 (03) ◽  
pp. 339-350
Author(s):  
KUMAR GANAPATHY ◽  
BENJAMIN W. WAH

Two-level pipelining in processor arrays (PAs) involves pipelining of operations across processing elements (PEs) and pipelining of operations in functional units in each PE. Although it is an attractive method for improving the throughput of PAs, existing methods for generating PAs with two-level pipelining are restricted and cannot systematically explore the entire space of feasible designs. In this paper, we extend a systematic design method, called General Parameter Method (GPM), we have developed earlier to find optimal designs of PAs with two-level pipelines. The basic idea is to add new constraints on periods of data flows to include the effect of internal functional pipelines in the PEs. As an illustration, we present pipelined PA designs for computing matrix products. For n-dimensional meshes and other symmetric problems, we provide an efficient scheme to obtain a pipelined PA from a non-pipelined PA using a reindexing transformation. This scheme is used in GPM as a pruning condition to arrive at optimal pipelined PAs efficiently. For pipelines with minimum initiation interval (MII) greater than unity, we show additional constraints that ensure correctness of the synthesized PAs.


Author(s):  
Kazuko Fuchi ◽  
Philip R. Buskohl ◽  
James J. Joo ◽  
Gregory W. Reich ◽  
Richard A. Vaia

Origami structures morph between 2D and 3D conformations along predetermined fold lines that efficiently program the form of the structure and show potential for many engineering applications. However, the enormity of the design space and the complex relationship between origami-based geometries and engineering metrics place a severe limitation on design strategies based on intuition. The presented work proposes a systematic design method using topology optimization to distribute foldline properties within a reference crease pattern, adding or removing folds through optimization, for a mechanism design. Following the work of Schenk and Guest, foldable structures are modeled as pin-joint truss structures with additional constraints on fold, or dihedral, angles. The performance of a designed origami mechanism is evaluated in 3D by applying prescribed forces and finding displacements at set locations. The integration of the concept of origami in mechanism design thus allows for the description of designs in 2D and performance in 3D. Numerical examples indicate that origami mechanisms with desired deformations can be obtained using the proposed method. A constraint on the number of foldlines is used to simplify a design.


Sign in / Sign up

Export Citation Format

Share Document