Concept Design of Surface-mounted Permanent Magnet Vernier Motor Using Flux Modulation Effect by Winding Method

Author(s):  
Hyung-Woo Kim ◽  
Seung-Gu Kang ◽  
Hye-Won Yang ◽  
Yong-Jae Kim ◽  
Sang-Yong Jung
Author(s):  
Y. Oner ◽  
Z.Q. Zhu ◽  
L.J. Wu ◽  
X. Ge

Purpose – Due to high electromagnetic torque at low speed, vernier machines are suitable for direct-drive applications such as electric vehicles and wind power generators. The purpose of this paper is to present an exact sub-domain model for analytically predicting the open-circuit magnetic field of permanent magnet vernier machine (PMVM) including tooth tips. The entire field domain is divided into five regions, viz. magnets, air gap, slot openings, slots, and flux-modulation pole slots (FMPs). The model accounts for the influence of interaction between PMs, FMPs and slots, and radial/parallel magnetization. Design/methodology/approach – Magnetic field distributions for slot and air-gap, flux linkage, back-EMF and cogging torque waveforms are obtained from the analytical method and validated by finite element analysis (FEA). Findings – It is found that the developed sub-domain model including tooth tips is very accurate and is applicable to PMVM having any combination of slots/FMPs/PMs. Originality/value – The main contributions include: accurate sub-domain model for PMVM is proposed for open-circuit including tooth-tip which cannot be accounted for in literature; the model accounts the interaction between flux modulation pole (FMP) and slot; developed sub-domain model is accurate and applicable to any slot/FMP/PM combinations; and it has investigated the influence of FMP/slot opening width/height on cogging torque.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1238 ◽  
Author(s):  
Dong Yu ◽  
Xiaoyan Huang ◽  
Lijian Wu ◽  
Youtong Fang

This paper presents a novel outer rotor permanent-magnet vernier machine (PMVM) for in-wheel direct-drive application. The overhang structures of the rotor and flux modulation pole (FMP) are introduced. The soft magnetic composite (SMC) was adopted in the FMP overhang to allow more axial flux. The 3-D finite element analysis (FEA) was carried out to prove that the proposed machine can effectively utilize the end winding space to enhance the air-gap flux density. Hence the PMVM can offer 27.3% and 14.5% higher torque density than the conventional machine with no overhang structure and the machine with only rotor overhang structure, respectively. Nevertheless, the efficiency of the proposed machine is slightly lower than the conventional ones due to the extra losses from the overhang structures.


Sign in / Sign up

Export Citation Format

Share Document