Design and Control of Single-Phase Grid-Connected Photovoltaic Microinverter with Reactive Power Support Capability

Author(s):  
Geon-Hong Min ◽  
Kyung-Hwan Lee ◽  
Jung-Ik Ha ◽  
Myong Hwan Kim
10.29007/vt1t ◽  
2018 ◽  
Author(s):  
Dhavalkumar Desai ◽  
Swapnil Arya

In this paper Matlab-simulink model of single phase variable load with Fixed Capacitor-Thyristor controlled reactor (FC-TCR) for compensation of reactive power is presented. The specific feature of proposed model is determining load reactive power instantaneously and by involving automatic control method compensate load reactive power. The model of FC-TCR and control system is presented such that it is easy to implement in hardware. Detail discussion of all the block is given. And all the results are discussed for the various load.


Author(s):  
A. Zare ◽  
S. B M.T. Iqbal

Designing control strategies to connect a photovoltaic (PV) system to the grid has been significantly challenging. This paper focuses on developing a controller for a single-phase PV system connected to the grid and its implementation to modify the power factor in the distribution power system. To design a grid-connected PV system, its components are modeled, such as PV panels, Maximum Power Point tracking (MPPT) algorithm, the grid interface inverter with the appropriate filter, and the DC link capacitor. SIMULINK / MATLAB is used for simulation in this study. The proposed control strategy is designed to track the maximum power point of The PV panels and control the PV active and reactive output power. In this paper, the presented reactive power control provides the PV system with power factor correction (PFC) capability. The proposed technique for checking controller validity is tested, and the results prove that the proposed controller is good and provides the required performance.


2021 ◽  
pp. 0309524X2110241
Author(s):  
Nindra Sekhar ◽  
Natarajan Kumaresan

To overcome the difficulties of extending the main power grid to isolated locations, this paper proposes the local installation of a combination of three renewable energy sources, namely, a wind driven DFIG, a solar PV unit, a biogas driven squirrel-cage induction generator (SCIG), and an energy storage battery system. In this configuration one bi-directional SPWM inverter at the rotor side of the DFIG controls the voltage and frequency, to maintain them constant on its stator side, which feeds the load. The PV-battery also supplies the load, through another inverter and a hysteresis controller. Appropriately adding a capacitor bank and a DSTATCOM has also been considered, to share the reactive power requirement of the system. Performance of various modes of operation of this coordinated scheme has been studied through simulation. All the results and relevant waveforms are presented and discussed to validate the successful working of the proposed system.


Author(s):  
Chethan Parthasarathy ◽  
Hossein Hafezi ◽  
Hannu Laaksonen

AbstractLithium-ion battery energy storage systems (Li-ion BESS), due to their capability in providing both active and reactive power services, act as a bridging technology for efficient implementation of active network management (ANM) schemes for land-based grid applications. Due to higher integration of intermittent renewable energy sources in the distribution system, transient instability may induce power quality issues, mainly in terms of voltage fluctuations. In such situations, ANM schemes in the power network are a possible solution to maintain operation limits defined by grid codes. However, to implement ANM schemes effectively, integration and control of highly flexible Li-ion BESS play an important role, considering their performance characteristics and economics. Hence, in this paper, an energy management system (EMS) has been developed for implementing the ANM scheme, particularly focusing on the integration design of Li-ion BESS and the controllers managing them. Developed ANM scheme has been utilized to mitigate MV network issues (i.e. voltage stability and adherence to reactive power window). The efficiency of Li-ion BESS integration methodology, performance of the EMS controllers to implement ANM scheme and the effect of such ANM schemes on integration of Li-ion BESS, i.e. control of its grid-side converter (considering operation states and characteristics of the Li-ion BESS) and their coordination with the grid side controllers have been validated by means of simulation studies in the Sundom smart grid network, Vaasa, Finland.


2021 ◽  
Vol 19 (02) ◽  
pp. 250-259
Author(s):  
Jakson Paulo Bonaldo ◽  
Jose de Arimateia Olimpio Filho ◽  
Augusto Matheus dos Santos Alonso ◽  
Helmo Kelis Morales Paredes ◽  
Fernando Pinhabel Marafao

Author(s):  
Nasiru B. Kadandani ◽  
Salaheddine Ethni ◽  
Mohamed Dahidah ◽  
Hamza Khalfalla

Sign in / Sign up

Export Citation Format

Share Document