scholarly journals Renormalization: Single-photon processes of two-level system in free space

2020 ◽  
Vol 31 (5) ◽  
pp. 908-915
Author(s):  
Wang Chong ◽  
Zhu Yong ◽  
Li Liangsheng ◽  
Yin Hongcheng
Author(s):  
Fabio Signorelli ◽  
Fabio Telesca ◽  
Enrico Conca ◽  
Adriano Della Frera ◽  
Alessandro Ruggeri ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Shihan Sajeed ◽  
Thomas Jennewein

AbstractQuantum channels in free-space, an essential prerequisite for fundamental tests of quantum mechanics and quantum technologies in open space, have so far been based on direct line-of-sight because the predominant approaches for photon-encoding, including polarization and spatial modes, are not compatible with randomly scattered photons. Here we demonstrate a novel approach to transfer and recover quantum coherence from scattered, non-line-of-sight photons analyzed in a multimode and imaging interferometer for time-bins, combined with photon detection based on a 8 × 8 single-photon-detector-array. The observed time-bin visibility for scattered photons remained at a high 95% over a wide scattering angle range of −450 to +450, while the individual pixels in the detector array resolve or track an image in its field of view of ca. 0.5°. Using our method, we demonstrate the viability of two novel applications. Firstly, using scattered photons as an indirect channel for quantum communication thereby enabling non-line-of-sight quantum communication with background suppression, and secondly, using the combined arrival time and quantum coherence to enhance the contrast of low-light imaging and laser ranging under high background light. We believe our method will instigate new lines for research and development on applying photon coherence from scattered signals to quantum sensing, imaging, and communication in free-space environments.


Metrologia ◽  
2019 ◽  
Vol 57 (1) ◽  
pp. 015002 ◽  
Author(s):  
Thomas Gerrits ◽  
Alan Migdall ◽  
Joshua C Bienfang ◽  
John Lehman ◽  
Sae Woo Nam ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Saifen Yu ◽  
Zhen Zhang ◽  
Haiyun Xia ◽  
Xiankang Dou ◽  
Tengfei Wu ◽  
...  

AbstractSpectroscopy is a well-established nonintrusive tool that has played an important role in identifying and quantifying substances, from quantum descriptions to chemical and biomedical diagnostics. Challenges exist in accurate spectrum analysis in free space, which hinders us from understanding the composition of multiple gases and the chemical processes in the atmosphere. A photon-counting distributed free-space spectroscopy is proposed and demonstrated using lidar technique, incorporating a comb-referenced frequency-scanning laser and a superconducting nanowire single-photon detector. It is suitable for remote spectrum analysis with a range resolution over a wide band. As an example, a continuous field experiment is carried out over 72 h to obtain the spectra of carbon dioxide (CO2) and semi-heavy water (HDO, isotopic water vapor) in 6 km, with a range resolution of 60 m and a time resolution of 10 min. Compared to the methods that obtain only column-integrated spectra over kilometer-scale, the range resolution is improved by 2–3 orders of magnitude in this work. The CO2 and HDO concentrations are retrieved from the spectra acquired with uncertainties as low as ±1.2% and ±14.3%, respectively. This method holds much promise for increasing knowledge of atmospheric environment and chemistry researches, especially in terms of the evolution of complex molecular spectra in open areas.


Author(s):  
Tobias Heindel ◽  
Markus Rau ◽  
Sebastian Unsleber ◽  
Tristan Braun ◽  
Julian Fischer ◽  
...  

Author(s):  
Anita Dabrowska ◽  
Dariusz Chruscinski ◽  
Sagnik Chakraborty ◽  
Gniewomir Sarbicki

Abstract An evolution of a two-level system (qubit) interacting with a single-photon wave packet is analyzed. It is shown that a hierarchy of master equations gives rise to phase covariant qubit evolution. The temporal correlations in the input field induce nontrivial memory effects for the evolution of a qubit. It is shown that in the resonant case whenever time-local generator is regular (does not display singularities) the qubit evolution never displays information backflow. However, in general the generator might be highly singular leading to intricate non-Markovian effects. A detailed analysis of the exponential profile is provided which allows to illustrate all characteristic feature of the qubit evolution.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Elena Anisimova ◽  
Dmitri Nikulov ◽  
Simeng Simone Hu ◽  
Mark Bourgon ◽  
Sebastian Philipp Neumann ◽  
...  

AbstractWe build and test a single-photon detector based on a Si avalanche photodiode Excelitas 30902SH thermoelectrically cooled to −100∘C. Our detector has dark count rate below 1 Hz, $500\ \mu\mathrm{m}$ 500 μ m diameter photosensitive area, photon detection efficiency around 50%, afterpulsing less than 0.35%, and timing jitter under 1 ns. These characteristics make it suitable for long-distance free-space quantum communication links, which we briefly discuss. We also report an improved method that we call long-time afterpulsing analysis, used to determine and visualise long trap lifetimes at different temperatures.


Optica ◽  
2021 ◽  
Author(s):  
Andrew Mueller ◽  
Boris Korzh ◽  
Marcus Runyan ◽  
Emma Wollman ◽  
Andrew Beyer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document