Machine Learning Based Task Distribution in Heterogeneous Fog-Cloud Environments

Author(s):  
Mohammadreza Pourkiani ◽  
Masoud Abedi
2022 ◽  
pp. 83-112
Author(s):  
Myo Zarny ◽  
Meng Xu ◽  
Yi Sun

Network security policy automation enables enterprise security teams to keep pace with increasingly dynamic changes in on-premises and public/hybrid cloud environments. This chapter discusses the most common use cases for policy automation in the enterprise, and new automation methodologies to address them by taking the reader step-by-step through sample use cases. It also looks into how emerging automation solutions are using big data, artificial intelligence, and machine learning technologies to further accelerate network security policy automation and improve application and network security in the process.


Author(s):  
Myo Zarny ◽  
Meng Xu ◽  
Yi Sun

Network security policy automation enables enterprise security teams to keep pace with increasingly dynamic changes in on-premises and public/hybrid cloud environments. This chapter discusses the most common use cases for policy automation in the enterprise, and new automation methodologies to address them by taking the reader step-by-step through sample use cases. It also looks into how emerging automation solutions are using big data, artificial intelligence, and machine learning technologies to further accelerate network security policy automation and improve application and network security in the process.


2021 ◽  
Vol 22 (4) ◽  
pp. 425-444
Author(s):  
Mahreen Saleem ◽  
M.R Warsi ◽  
Saiful Islam ◽  
Areesha Anjum ◽  
Nadia Siddiquii

Over the past years, Cloud computing has become one of the most influential information technologies to combat computing needs because of its unprecedented advantages. In spite of all the social and economic benefits it provides, it has its own fair share of issues. These include privacy, security, virtualization, storage, and trust. The underlying issues of privacy, security, and trust are the major barriers to the adoption of cloud by individuals and organizations as a whole. Trust has been the least looked into since it includes both subjective and objective characteristics. There is a lack of review on trust models in this research domain. This paper focuses on getting insight into the nomenclature of trust, its classifications, trust dimensions and throws an insight into various trust models that exist in the current knowledge stack. Also, various trust evaluation measures are highlighted in this work. We also draw a comparative analysis of various trust evaluation models and metrics to better understand the notion of trust in cloud environments. Furthermore, this work brings into light some of the gaps and areas that need to be tackled toward solving the trust issues in cloud environments so as to provide a trustworthy cloud ecosystem. Lastly, we proposed a Machine Learning backed Rich model based solution for trust verification in Cloud Computing. We proposed an approach for verifying whether the right software is running for the correct services in a trusted manner by analyzing features generated from the output cloud processed data. The proposed scheme can be utilized for verifying the cloud trust in delivering services as expected that can be perceived as an initiative towards trust evaluation in cloud services employing Machine learning techniques. The experimental results prove that the proposed method verifies the service utilized with an accuracy of 99%.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7509
Author(s):  
Sebastian Alberternst ◽  
Alexander Anisimov ◽  
Andre Antakli ◽  
Benjamin Duppe ◽  
Hilko Hoffmann ◽  
...  

The concept of the cloud-to-thing continuum addresses advancements made possible by the widespread adoption of cloud, edge, and IoT resources. It opens the possibility of combining classical symbolic AI with advanced machine learning approaches in a meaningful way. In this paper, we present a thing registry and an agent-based orchestration framework, which we combine to support semantic orchestration of IoT use cases across several federated cloud environments. We use the concept of virtual sensors based on machine learning (ML) services as abstraction, mediating between the instance level and the semantic level. We present examples of virtual sensors based on ML models for activity recognition and describe an approach to remedy the problem of missing or scarce training data. We illustrate the approach with a use case from an assisted living scenario.


2020 ◽  
Vol 43 ◽  
Author(s):  
Myrthe Faber

Abstract Gilead et al. state that abstraction supports mental travel, and that mental travel critically relies on abstraction. I propose an important addition to this theoretical framework, namely that mental travel might also support abstraction. Specifically, I argue that spontaneous mental travel (mind wandering), much like data augmentation in machine learning, provides variability in mental content and context necessary for abstraction.


Sign in / Sign up

Export Citation Format

Share Document