Migrating Electronic Systems from Fault Tolerant Computing to Error Resilience

Author(s):  
Heinrich Theodor Vierhaus
2014 ◽  
Vol 12 ◽  
pp. 187-195 ◽  
Author(s):  
J. Geldmacher ◽  
J. Götze

Abstract. This paper investigates the impact of an error-prone buffer memory on a channel decoder as employed in modern digital communication systems. On one hand this work is motivated by the fact that energy efficient decoder implementations may not only be achieved by optimizations on algorithmic level, but also by chip-level modifications. One of such modifications is so called aggressive voltage scaling of buffer memories, which, while achieving reduced power consumption, also injects errors into the likelihood values used during the decoding process. On the other hand, it has been recognized that the ongoing increase of integration density with smaller structures makes integrated circuits more sensitive to process variations during manufacturing, and to voltage and temperature variations. This may lead to a paradigm shift from 100 %-reliable operation to fault tolerant signal processing. Both reasons are the motivation to discuss the required co-design of algorithms and underlying circuits. For an error-prone receive buffer of a Turbo decoder the influence of quantizer design and index assignment on the error resilience of the decoding algorithm is discussed. It is shown that a suitable design of both enables a compensation of hardware induced bits errors with rates up to 1 % without increasing the computational complexity of the decoder.


Author(s):  
Milos Stanisavljevic ◽  
Alexandre Schmid ◽  
Yusuf Leblebici

The necessity of applying fault-tolerant techniques to increase the reliability of future nano-electronic systems is an undisputed fact, dictated by the high density of faults that will plague the chips. The averaging and thresholding fault-tolerant technique that has proven remarkable efficiency in CMOS is presented for SET-based designs. Computer simulations demonstrate the superiority of this fault-tolerant technique over other methods, which is specifically the case when an adaptable threshold is used.


Sign in / Sign up

Export Citation Format

Share Document