Theoretical and Technological Advancements in Nanotechnology and Molecular Computation
Latest Publications


TOTAL DOCUMENTS

19
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

Published By IGI Global

9781609601867, 9781609601881

Author(s):  
Takuya Kaizawa ◽  
Mingyu Jo ◽  
Masashi Arita ◽  
Akira Fujiwara ◽  
Kenji Yamazaki ◽  
...  

A highly functional Si nanodot array device that operates by means of single-electron effects was experimentally demonstrated. The device features many input gates, and many outputs can be attached. A nanodot array device with three input gates and two output terminals was fabricated on a silicon-on-insulator wafer using conventional Si MOS processes. Its feasibility was demonstrated by its operation as both a half adder and a full adder when the operation voltage was carefully selected.


Author(s):  
Andrew Kilinga Kikombo ◽  
Tetsuya Asai ◽  
Takahide Oya ◽  
Alexandre Schmid ◽  
Yusuf Leblebici ◽  
...  

We propose a bio-inspired circuit performing pulse-density modulation with single-electron devices. The proposed circuit consists of three single-electron neuronal units, receiving the same input and are connected to a common output. The output is inhibitorily fedback to the three neuronal circuits through a capacitive coupling. The circuit performance was evaluated through Monte-Carlo based computer simulations. We demonstrated that the proposed circuit possesses noise-shaping characteristics, where signal and noises are separated into low and high frequency bands respectively. This significantly improved the signal-to-noise ratio (SNR) by 4.34 dB in the coupled network, as compared to the uncoupled one. The noise-shaping properties are as a result of i) the inhibitory feedback between the output and the neuronal circuits, and ii) static noises (originating from device fabrication mismatches) and dynamic noises (as a result of thermally induced random tunneling events) introduced into the network.


Author(s):  
Shigeo Sato ◽  
Koji Nakajima

Single electron devices utilizing the Coulomb blockade phenomenon have attractive features such as extreme low power consumption, one by one electron flow controllability, small device size, etc. However, besides promising applications such as the current standard and charge detection, it is not easy to apply the single electron devices to conventional computational tasks due to its stochastic operation and low amplification capability. Therefore, it is important for us to consider suitable applications of single electron devices. In this paper, we show three applications such as a noise generator, a stochastic neural network, and a charge detector employing stochastic resonance. Trough these applications, we see the advantages of single electron devices and study the direction of applications.


Author(s):  
Takashi Morie

The single-electron circuit technology should aim at developing information processing systems using the intrinsic properties of single-electron devices. The operation principles of single-electron devices are completely different from that of conventional CMOS devices, but both devices should co-exist in the information processing systems. In this paper, according to a scenario for achieving large-scale integrated systems of single-electron devices, some single-electron devices and circuits utilizing stochastic operation for associative processing and a spiking neuron model are described.


Author(s):  
Naoki Matsumaru ◽  
Thomas Hinze ◽  
Peter Dittrich

The construction of molecular-scale machines requires novel paradigms for their programming. Here, we assume a scenario of distributed devices that process in-formation by chemical reactions and that communicate by exchanging molecules. Programming such a distributed system requires specifing reaction rules as well as exchange rules. Here, we present an approach that helps to guide the manual construction of distributed chemical programs. We show how chemical organization theory can assist a programmer in predicting the behavior of the program. The basic idea is that a computation should be understood as a movement between chemical organizations, which are closed and self-maintaining sets of molecular species. When sticking to that design principle, fine-tuning of kinetic laws becomes less important. We demonstrate the approach by a novel chemical program that solves the maximal independent set problem on a distributed system without any central control—a typical situation in ad-hoc networks. We show that the computational result, which emerges from many local reaction events, can be explained in terms of chemical organizations, which assures robustness and low sensitivity to the choice of kinetic parameters.


Author(s):  
B. P. J. de Lacy Costello ◽  
J. Armstrong ◽  
I. Jahan ◽  
N. M. Ratcliffe

Under normal reaction conditions [AlCl3 0.28-0.34M and NaOH 2.5M A.Volford et al.] spontaneous spiral and circular travelling precipitate waves were observed. We constructed a phase diagram for the reaction and identified a large controllable region at lower aluminium chloride levels. We show that it is possible to selectively initiate travelling circular waves and other self-organised structures within this controllable region. In previous work initiation was undertaken before adding the outer electrolyte resulting in disorganised waves. However, marking the gel one minute after adding outer electrolyte resulted in cardioid waves. Increasing the time interval to two minutes caused a transition to single circular waves. If the gel is marked sequentially nested circular waves (target waves) are formed. These reactions were used to calculate simple and additively weighted Voronoi tessellations. The fine control of self-organisation in precipitation reactions is of interest for the synthesis of novel and functional materials.


Author(s):  
Masahiko Hiratsuka ◽  
Koichi Ito ◽  
Takafumi Aoki ◽  
Tatsuo Higuchi

This article investigates a possibility of constructing massively parallel computing systems using molecular electronics technology. By employing the specificity of biological molecules, such as enzymes, new integrated circuit architectures that are free from interconnection problems could be constructed. To clarify the proposed concept, we present a functional model of an artificial catalyst device called an enzyme transistor. In this article, we develop artificial catalyst devices as basic building blocks for molecular computing integrated circuits, and explore the possibility of a new computing paradigm using reaction-diffusion dynamics induced by collective behavior of artificial catalyst devices.


Author(s):  
Seiya Kasai

Stochastic resonance behavior of single electrons in a quantum dot and its summing network is investigated theoretically. Dynamic behavior of the single electron in the system at finite temperature is analyzed using a master equation with a tunneling transition rate. The analytical model indicates that an input-output correlation has a peak as a function of temperature, which confirms the appearance of the stochastic resonance. The peak position and height depend on charging energy, tunnel resistance, and input signal frequency. It is also found that the correlation is enhanced by formation of a summing network integrating quantum dots in parallel. The present model quantitatively explains the stochastic resonance behaviors of the single electrons predicted by a circuit simulation (Oya, Asai, & Amemiya, 2007).


Author(s):  
Sridhar Patibandla ◽  
Bhargava Kanchibotla ◽  
Sandipan Pramanik ◽  
Supriyo Bandyopadhyay ◽  
Marc Cahay

We have measured the longitudinal (T1) and transverse (T2) spin relaxation times in the organic semiconductor tris(8-hydroxyquinolinolato aluminum) - also known as Alq3 - at different temperatures and under different electric fields driving current. These measurements shed some light on the spin relaxation mechanisms in the organic. The two most likely mechanisms affecting T1 are hyperfine interactions between carrier and nuclear spins, and the Elliott-Yafet mode. On the other hand, the dominant mechanism affecting T2 of delocalized electrons in Alq3 remains uncertain, but for localized electrons (bound to defect or impurity sites), the dominant mechanism is most likely spin-phonon coupling.


Author(s):  
Liang Zhang ◽  
Andrew Adamatzky

We discuss a theoretical design of an arithmetical chip built on an excitable medium substrate. The chip is simulated in a two-dimensional three-state cellular automaton with eight-cell neighborhoods. Every resting cell is excited if it has exactly two excited neighbors, the excited cells takes refractory state unconditionally. A transition from refractory back to resting state also happens irrelevantly to a state of the cell neighborhood. The design is based on principles of collision-based computing. Boolean logic values are encoded by traveling localizations, or particles. Logical gates are realized in collisions between the particles. Detailed blue prints of collision-based adders and multipliers presented in the article pave the way to future laboratory experimental prototypes of general-purpose chemical computers.


Sign in / Sign up

Export Citation Format

Share Document