A 122-168GHz Radar/Communication Fusion-Mode Transceiver with 30GHz Chirp Bandwidth, 13dBm Psat, and 8.3dBm OP1dB in 28nm CMOS

Author(s):  
Zipeng Chen ◽  
Wei Deng ◽  
Haikun Jia ◽  
Pingda Guan ◽  
Taikun Ma ◽  
...  
Keyword(s):  
2021 ◽  
Vol 13 (9) ◽  
pp. 1619
Author(s):  
Bin Yan ◽  
Pan Fan ◽  
Xiaoyan Lei ◽  
Zhijie Liu ◽  
Fuzeng Yang

The apple target recognition algorithm is one of the core technologies of the apple picking robot. However, most of the existing apple detection algorithms cannot distinguish between the apples that are occluded by tree branches and occluded by other apples. The apples, grasping end-effector and mechanical picking arm of the robot are very likely to be damaged if the algorithm is directly applied to the picking robot. Based on this practical problem, in order to automatically recognize the graspable and ungraspable apples in an apple tree image, a light-weight apple targets detection method was proposed for picking robot using improved YOLOv5s. Firstly, BottleneckCSP module was improved designed to BottleneckCSP-2 module which was used to replace the BottleneckCSP module in backbone architecture of original YOLOv5s network. Secondly, SE module, which belonged to the visual attention mechanism network, was inserted to the proposed improved backbone network. Thirdly, the bonding fusion mode of feature maps, which were inputs to the target detection layer of medium size in the original YOLOv5s network, were improved. Finally, the initial anchor box size of the original network was improved. The experimental results indicated that the graspable apples, which were unoccluded or only occluded by tree leaves, and the ungraspable apples, which were occluded by tree branches or occluded by other fruits, could be identified effectively using the proposed improved network model in this study. Specifically, the recognition recall, precision, mAP and F1 were 91.48%, 83.83%, 86.75% and 87.49%, respectively. The average recognition time was 0.015 s per image. Contrasted with original YOLOv5s, YOLOv3, YOLOv4 and EfficientDet-D0 model, the mAP of the proposed improved YOLOv5s model increased by 5.05%, 14.95%, 4.74% and 6.75% respectively, the size of the model compressed by 9.29%, 94.6%, 94.8% and 15.3% respectively. The average recognition speeds per image of the proposed improved YOLOv5s model were 2.53, 1.13 and 3.53 times of EfficientDet-D0, YOLOv4 and YOLOv3 and model, respectively. The proposed method can provide technical support for the real-time accurate detection of multiple fruit targets for the apple picking robot.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1507
Author(s):  
Feiyu Zhang ◽  
Luyang Zhang ◽  
Hongxiang Chen ◽  
Jiangjian Xie

Deep convolutional neural networks (DCNNs) have achieved breakthrough performance on bird species identification using a spectrogram of bird vocalization. Aiming at the imbalance of the bird vocalization dataset, a single feature identification model (SFIM) with residual blocks and modified, weighted, cross-entropy function was proposed. To further improve the identification accuracy, two multi-channel fusion methods were built with three SFIMs. One of these fused the outputs of the feature extraction parts of three SFIMs (feature fusion mode), the other fused the outputs of the classifiers of three SFIMs (result fusion mode). The SFIMs were trained with three different kinds of spectrograms, which were calculated through short-time Fourier transform, mel-frequency cepstrum transform and chirplet transform, respectively. To overcome the shortage of the huge number of trainable model parameters, transfer learning was used in the multi-channel models. Using our own vocalization dataset as a sample set, it is found that the result fusion mode model outperforms the other proposed models, the best mean average precision (MAP) reaches 0.914. Choosing three durations of spectrograms, 100 ms, 300 ms and 500 ms for comparison, the results reveal that the 300 ms duration is the best for our own dataset. The duration is suggested to be determined based on the duration distribution of bird syllables. As for the performance with the training dataset of BirdCLEF2019, the highest classification mean average precision (cmAP) reached 0.135, which means the proposed model has certain generalization ability.


2021 ◽  
Vol 256 ◽  
pp. 02002
Author(s):  
Zhendong Du ◽  
Guosheng Jin ◽  
Yu Fang ◽  
Chenyin Yu ◽  
Yupeng Hu ◽  
...  

Multi-station fusion mode (MSF) generally includes energy storage system, data center and electric vehicle charging station. It can improve the utilization rate of land and power distribution resources of urban substations. This paper studies configuration of ESS in the MSF model, aiming at reducing total cost. Firstly, an AC-DC system of MSF model is established. Then, aiming at economy, the optimal configuration model of ESS is established. Finally, the effectiveness of the model is verified by a practical example, and the MATLAB toolbox YALMIP with the CPLEX solver is used to conduct the ESS planning.


2020 ◽  
Vol 55 (12) ◽  
pp. 3294-3307
Author(s):  
Pratap Tumkur Renukaswamy ◽  
Nereo Markulic ◽  
Piet Wambacq ◽  
Jan Craninckx

Sign in / Sign up

Export Citation Format

Share Document