scholarly journals Liquid atomization process in medical applications

2021 ◽  
Author(s):  
Franciszek Klimczak ◽  
Tomasz Burda ◽  
Marek Ochowiak ◽  
Sylwia Włodarczak ◽  
Andżelika Krupińska

Author(s):  
V A Arkhipov ◽  
V M Boiko ◽  
V D Goldin ◽  
E A Maslov ◽  
S E Orlov ◽  
...  

Author(s):  
Arnab Chakraborty ◽  
Srikrishna Sahu

Abstract The present research aims to investigate the liquid atomization process in a slinger atomizer test rig that houses a high-speed motor which allows high rotational speed of the slinger disc. Instead of delivering the liquid directly on the slinger disc, which is commonly reported in the literature, a stationary manifold was designed that receives the liquid from the pump and supply multiple liquid jets that impinge on the rotating slinger disc. The liquid jet breakup process was visualized using front light illumination technique. All experiments were performed using water as the working fluid and under atmospheric conditions. Four different water flow rates, ranging from 0.2 lpm up to 0.8 lpm were considered. The rotational speed of the slinger was varied from 5000 rpm up to 30000 rpm, which has been rarely reported in the past. The paper reports a comprehensive study on the differences in the liquid breakup modes due to higher liquid flow rate for the same rotational speed and vice-versa. Mostly the liquid was found to attach to the side of the slinger holes that is opposite to the direction of rotation indicating the strong influence of Coriolis forces on the liquid flow within the slinger and hence the atomization process. The droplet size in the spray was measured using the Interferometric Laser Imaging for Droplet Sizing (ILIDS) technique.


Author(s):  
Christophe Dumouchel

A multi-scale approach to investigate liquid atomization processes is introduced. It describes the liquid system by the scale distribution whose determination is inspired from the Euclidean Distance Mapping used to measure the fractal dimension of a contour. The scale distribution is introduced in 2D and in 3D and applications from previous investigations are presented. The 2D applications are performed on experimental images and the 3D applications are performed on results obtained from Direct Numerical Simulation. The multi-scale analysis allows identifying and quantifying the mechanisms responsible for the interface evolution according to the scale. Among other results, the analyses presented here demonstrate the improvement of the atomization process when an elongation mechanism contributes to the thinning of the small structures. The multi-scale tool also provides new metrics that may be used to validate simulation results. An example of this is presented and discussed. Finally, the paper evokes several approaches to implementing the scale-distribution concept to improve or build new models.


Author(s):  
Jun Ishimoto ◽  
Fuminori Sato ◽  
Gaku Sato

The effect of microcavitation on the 3D structure of the liquid atomization process in a gasoline injector nozzle was numerically investigated and visualized by a new integrated computational fluid dynamics (CFD) technique for application in the automobile industry. The present CFD analysis focused on the primary breakup phenomenon of liquid atomization which is closely related to microcavitation, the consecutive formation of liquid film, and the generation of droplets by a lateral flow in the outlet section of the nozzle. Governing equations for a high-speed lateral atomizing injector nozzle flow taking into account the microcavitation generation based on the barotropic large eddy simulation-volume of fluid model in conjunction with the continuum surface force model were developed, and then an integrated parallel computation was performed to clarify the detailed atomization process coincident with the microcavitation of a high-speed nozzle flow. Furthermore, data on such factors as the volume fraction of microcavities, atomization length, liquid core shapes, droplet-size distribution, spray angle, and droplet velocity profiles, which are difficult to confirm by experiment, were acquired. According to the present analysis, the atomization rate and the droplets-gas atomizing flow characteristics were found to be controlled by the generation of microcavitation coincident with the primary breakup caused by the turbulence perturbation upstream of the injector nozzle, hydrodynamic instabilities at the gas-liquid interface, and shear stresses between the liquid core and periphery of the jet. Furthermore, it was found that the energy of vorticity close to the gas-liquid interface was converted to energy for microcavity generation or droplet atomization.


Author(s):  
J. M. Walsh ◽  
K. P. Gumz ◽  
J. C. Whittles ◽  
B. H. Kear

During a routine examination of the microstructure of rapidly solidified IN-100 powder, produced by a newly-developed centrifugal atomization process1, essentially two distinct types of microstructure were identified. When a high melt superheat is maintained during atomization, the powder particles are predominantly coarse-grained, equiaxed or columnar, with distinctly dendritic microstructures, Figs, la and 4a. On the other hand, when the melt superheat is reduced by increasing the heat flow to the disc of the rotary atomizer, the powder particles are predominantly microcrystalline in character, with typically one dendrite per grain, Figs, lb and 4b. In what follows, evidence is presented that strongly supports the view that the unusual microcrystalline structure has its origin in dendrite erosion occurring in a 'mushy zone' of dynamic solidification on the disc of the rotary atomizer.The critical observations were made on atomized material that had undergone 'splat-quenching' on previously solidified, chilled substrate particles.


Sign in / Sign up

Export Citation Format

Share Document