scholarly journals GEODYNAMICS

GEODYNAMICS ◽  
2011 ◽  
Vol 2(11)2011 (2(11)) ◽  
pp. 147-149
Author(s):  
R. I. Kutas ◽  

Heat flow density changes from 35-40 mW/m2 in the south-western part of East-European Craton and the Carpathian foredeep to 50-60 mW/m2 in the Outer Carpathians and to 80-120 mW/m2 in the Pannonian basin. Several levels of thermal field reflect main stages of tectonic evolution and feature of lithosphere structure. High heat flow anomaly was created by Cenozoic geodynamic processes related to collision of the European plate and Alcape microplate.

Author(s):  
Vladimir Ignatievich Zui

The territory of Belarus belongs to the western part of the Precambrian East European Platform. Its heat flow pattern is representing by alternating low and high heat flow anomalies. An overwhelming majority of heat flow determinations and in general of geothermal observations in Belarus were fulfilled in boreholes finished in the platform cover. Within the Belarusian Anteclise, Orsha Depression, western slope of the Voronezh Anteclise their bottom holes are typically within the zone of active water exchange, where the groundwater circulation sufficiently influences on recorded thermograms. For instance, observed heat flow density for a number of studied boreholes is low and ranges on average from 15–20 until 35–40 mW/m2 within the Orsha Depression. In a number of studied holes in the northern part of the structure, its values are surprisingly low. They are observed within upper horizons of the zone of active water exchange with pronounced groundwater circulation. Permeable rocks within the geologic section comprise the platform cover with a number of freshwater intervals. Their base is spread here up to depths of 150–250 m. The most of heat flow observations within this area were studied in boreholes which depths is only 200–300 m, sometimes less, as deeper wells are seldom within this geologic structure. Groundwater circulation within loose sediments cools them, most of thermograms here have a concaved shape to the depth axis. As a rule, heat flow values are sufficiently lower in a number of intervals in boreholes finished in the freshwater zone, relatively to the heat flow observed within deeper horizons of the platform cover. In some of studied boreholes, the observed heat flow is as low as 5–15 mW/m2. In most cases it has a tendency to stabilise only at intervals deeper than 600–800 m. It is the main reason for observed low heat flow zones.


Author(s):  
Mansouri Far Siamak

Heat flow data from the Eastern Mediterranean region indicates an extensive province of low heat flow, spreading over the whole basin of the Mediterranean to the east of Crete (Levantine Sea), Cyprus, and Northern Egypt. Surface geology of East Anatolia is complex because of recent active tectonic and volcanic activity. The region is composed of major tectonic units of Pontides, the Anatolid-Tauride Belt and Bitlis Suture Zone, North and East Anatolian faults. Ophiolitic and young volcanic rocks can be observed in many parts of East Anatolia. The Black Sea is surrounded by the Alpine-Himalayan Orogenic Belt of Crimea, Greater Caucasus, Pontides, Rhodope-Stranja Massif, Eastern Srednegorie, North Dobrogea and older tectonic units of different origins and ages such as the Precambrian East European Craton, Moesian Platform, Istanbul Zone and Adzhar-Trialet Folded System. Low heat flow density dominates in the Black Sea. The lowest (less•30 mW/m2 ) values have been recorded in central parts of the Western and Eastern Black Sea basins with maximal sedimentary thickness. Geothermal studies within the territories of Ukraine have been under way since sixties. Many important features of the thermal field remain unstudied. This applies in particular to the Ukrainian Shield and to the southern part of the Carpathian region. In general, the territory of Alpine folding within Turkey, Marmara and Aegean seas, Caucasus is characterized by high heat flow. The anomaly of its highest values (above 100 –150 mW/m2 ) exists within western Turkey, where tectonic conditions of extension prevail and underground steam is used to produce electricity. Three heat flow density profiles crossing the studied region and heat flow map were compiled.


2021 ◽  
Vol 2 (1) ◽  
pp. 38-43
Author(s):  
Elena A. Glukhova ◽  
Pavel I. Safronov ◽  
Lev M. Burshtein

The article presents the one-dimensional basin modeling performed in four wells to reconstruct the thermal history of deposits and reconstruct the effective values of the heat flow density.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Pauline Harlé ◽  
Alexandra R. L. Kushnir ◽  
Coralie Aichholzer ◽  
Michael J. Heap ◽  
Régis Hehn ◽  
...  

AbstractThe Upper Rhine Graben (URG) has been extensively studied for geothermal exploitation over the past decades. Yet, the thermal conductivity of the sedimentary cover is still poorly constrained, limiting our ability to provide robust heat flow density estimates. To improve our understanding of heat flow density in the URG, we present a new large thermal conductivity database for sedimentary rocks collected at outcrops in the area including measurements on (1) dry rocks at ambient temperature (dry); (2) dry rocks at high temperature (hot) and (3) water-saturated rocks at ambient temperature (wet). These measurements, covering the various lithologies composing the sedimentary sequence, are associated with equilibrium-temperature profiles measured in the Soultz-sous-Forêts wells and in the GRT-1 borehole (Rittershoffen) (all in France). Heat flow density values considering the various experimental thermal conductivity conditions were obtained for different depth intervals in the wells along with average values for the whole boreholes. The results agree with the previous heat flow density estimates based on dry rocks but more importantly highlight that accounting for the effect of temperature and water saturation of the formations is crucial to providing accurate heat flow density estimates in a sedimentary basin. For Soultz-sous-Forêts, we calculate average conductive heat flow density to be 127 mW/m2 when considering hot rocks and 184 mW/m2 for wet rocks. Heat flow density in the GRT-1 well is estimated at 109 and 164 mW/m2 for hot and wet rocks, respectively. Results from the Rittershoffen well suggest that heat flow density is nearly constant with depth, contrary to the observations for the Soultz-sous-Forêts site. Our results show a positive heat flow density anomaly in the Jurassic formations, which could be explained by a combined effect of a higher radiogenic heat production in the Jurassic sediments and thermal disturbance caused by the presence of the major faults close to the Soultz-sous-Forêts geothermal site. Although additional data are required to improve these estimates and our understanding of the thermal processes, we consider the heat flow densities estimated herein as the most reliable currently available for the URG.


Author(s):  
W. G. Powell ◽  
D. S. Chapman ◽  
N. Balling ◽  
A. E. Beck

Geothermics ◽  
1998 ◽  
Vol 27 (4) ◽  
pp. 469-484 ◽  
Author(s):  
Gennaro Corrado ◽  
Salvatore De Lorenzo ◽  
Francesco Mongelli ◽  
Antonio Tramacere ◽  
Gianmaria Zito

1984 ◽  
Vol 103 (1-4) ◽  
pp. 283-296 ◽  
Author(s):  
V. čermák ◽  
M. Krešl ◽  
J. Šafanda ◽  
M. Nápoles-Pruna ◽  
R. Tenreyro-Perez ◽  
...  

2016 ◽  
Vol 46 (1) ◽  
pp. 33-49 ◽  
Author(s):  
Dušan Majcin ◽  
Roman Kutas ◽  
Dušan Bilčík ◽  
Vladimír Bezák ◽  
Ignat Korchagin

Abstract The contribution presents the results acquired both by direct cognitive geothermic methods and by modelling approaches of the lithosphere thermal state in the region of the Transcarpathian depression and surrounding units. The activities were aimed at the determination of the temperature field distribution and heat flow density distribution in the upper parts of the Earth’s crust within the studied area. Primary new terrestrial heat flow density map was constructed from values determined for boreholes, from their interpretations and from newest outcomes of geothermal modelling methods based on steady-state and transient approaches, and also from other recently gained geophysical and geological knowledge. Thereafter we constructed the maps of temperature field distribution for selected depth levels of up to 5000 m below the surface. For the construction we have used measured borehole temperature data, the interpolation and extrapolation methods, and the modelling results of the refraction effects and of the influences of source type anomalies. New maps and other geothermic data served for the determination of depths with rock temperatures suitable for energy utilization namely production of electric energy minimally by the binary cycles. Consequently the thermal conditions were used to identify the most perspective areas for geothermal energy exploitation in the region under study.


Sign in / Sign up

Export Citation Format

Share Document