Adaptive Diversification (MPB-48)

Author(s):  
Michael Doebeli

Understanding the mechanisms driving biological diversity remains a central problem in ecology and evolutionary biology. Traditional explanations assume that differences in selection pressures lead to different adaptations in geographically separated locations. This book takes a different approach and explores adaptive diversification—diversification rooted in ecological interactions and frequency-dependent selection. In any ecosystem, birth and death rates of individuals are affected by interactions with other individuals. What is an advantageous phenotype therefore depends on the phenotype of other individuals, and it may often be best to be ecologically different from the majority phenotype. Such rare-type advantage is a hallmark of frequency-dependent selection and opens the scope for processes of diversification that require ecological contact rather than geographical isolation. This book investigates adaptive diversification using the mathematical framework of adaptive dynamics. Evolutionary branching is a paradigmatic feature of adaptive dynamics that serves as a basic metaphor for adaptive diversification, and the book explores the scope of evolutionary branching in many different ecological scenarios, including models of coevolution, cooperation, and cultural evolution. It also uses alternative modeling approaches. Stochastic, individual-based models are particularly useful for studying adaptive speciation in sexual populations, and partial differential equation models confirm the pervasiveness of adaptive diversification. Showing that frequency-dependent interactions are an important driver of biological diversity, the book provides a comprehensive theoretical treatment of adaptive diversification.

2015 ◽  
Vol 282 (1802) ◽  
pp. 20142648 ◽  
Author(s):  
Cortland K. Griswold

A fundamental goal of the biological sciences is to determine processes that facilitate the evolution of diversity. These processes can be separated into ecological, physiological, developmental and genetic. An ecological process that facilitates diversification is frequency-dependent selection caused by competition. Models of frequency-dependent adaptive diversification have generally assumed a genetic basis of phenotype that is non-epistatic. Here, we present a model that indicates diversification is accelerated by an epistatic basis of phenotype in combination with a competition model that invokes frequency-dependent selection. Our model makes use of a genealogical model of epistasis and insights into the effects of balancing selection on the genealogical structure of a population to understand how epistasis can facilitate diversification. The finding that epistasis facilitates diversification may be informative with respect to empirical results that indicate an epistatic basis of phenotype in experimental bacterial populations that experienced adaptive diversification.


2017 ◽  
Vol 114 (31) ◽  
pp. 8325-8329 ◽  
Author(s):  
Mathieu Chouteau ◽  
Violaine Llaurens ◽  
Florence Piron-Prunier ◽  
Mathieu Joron

Explaining the maintenance of adaptive diversity within populations is a long-standing goal in evolutionary biology, with important implications for conservation, medicine, and agriculture. Adaptation often leads to the fixation of beneficial alleles, and therefore it erodes local diversity so that understanding the coexistence of multiple adaptive phenotypes requires deciphering the ecological mechanisms that determine their respective benefits. Here, we show how antagonistic frequency-dependent selection (FDS), generated by natural and sexual selection acting on the same trait, maintains mimicry polymorphism in the toxic butterfly Heliconius numata. Positive FDS imposed by predators on mimetic signals favors the fixation of the most abundant and best-protected wing-pattern morph, thereby limiting polymorphism. However, by using mate-choice experiments, we reveal disassortative mate preferences of the different wing-pattern morphs. The resulting negative FDS on wing-pattern alleles is consistent with the excess of heterozygote genotypes at the supergene locus controlling wing-pattern variation in natural populations of H. numata. The combined effect of positive and negative FDS on visual signals is sufficient to maintain a diversity of morphs displaying accurate mimicry with other local prey, although some of the forms only provide moderate protection against predators. Our findings help understand how alternative adaptive phenotypes can be maintained within populations and emphasize the need to investigate interactions between selective pressures in other cases of puzzling adaptive polymorphism.


2020 ◽  
Vol 57 (4) ◽  
pp. 1162-1197
Author(s):  
Adrian Gonzalez Casanova ◽  
Charline Smadi

AbstractWe construct a multitype constant-size population model allowing for general selective interactions as well as extreme reproductive events. Our multidimensional model aims for the generality of adaptive dynamics and the tractability of population genetics. It generalises the idea of Krone and Neuhauser [39] and González Casanova and Spanò [29], who represented the selection by allowing individuals to sample several potential parents in the previous generation before choosing the ‘strongest’ one, by allowing individuals to use any rule to choose their parent. The type of the newborn can even not be one of the types of the potential parents, which allows modelling mutations. Via a large population limit, we obtain a generalisation of $\Lambda$ -Fleming–Viot processes, with a diffusion term and a general frequency-dependent selection, which allows for non-transitive interactions between the different types present in the population. We provide some properties of these processes related to extinction and fixation events, and give conditions for them to be realised as unique strong solutions of multidimensional stochastic differential equations with jumps. Finally, we illustrate the generality of our model with applications to some classical biological interactions. This framework provides a natural bridge between two of the most prominent modelling frameworks of biological evolution: population genetics and eco-evolutionary models.


2021 ◽  
Vol 17 (2) ◽  
pp. e1008733
Author(s):  
Gil Jorge Barros Henriques ◽  
Koichi Ito ◽  
Christoph Hauert ◽  
Michael Doebeli

Evolutionary branching occurs when a population with a unimodal phenotype distribution diversifies into a multimodally distributed population consisting of two or more strains. Branching results from frequency-dependent selection, which is caused by interactions between individuals. For example, a population performing a social task may diversify into a cooperator strain and a defector strain. Branching can also occur in multi-dimensional phenotype spaces, such as when two tasks are performed simultaneously. In such cases, the strains may diverge in different directions: possible outcomes include division of labor (with each population performing one of the tasks) or the diversification into a strain that performs both tasks and another that performs neither. Here we show that the shape of the population’s phenotypic distribution plays a role in determining the direction of branching. Furthermore, we show that the shape of the distribution is, in turn, contingent on the direction of approach to the evolutionary branching point. This results in a distribution–selection feedback that is not captured in analytical models of evolutionary branching, which assume monomorphic populations. Finally, we show that this feedback can influence long-term evolutionary dynamics and promote the evolution of division of labor.


2017 ◽  
Author(s):  
Dustin Brisson

AbstractThis preprint has been reviewed and recommended by Peer Community in Evolutionary Biology (http://dx.doi.org/10.24072/pci.evolbiol.100024).The existence of persistent genetic variation within natural populations presents an evolutionary problem as natural selection and genetic drift tend to erode genetic diversity. Models of balancing selection were developed to account for the high and sometimes extreme levels of polymorphism found in many natural populations. Negative frequency-dependent selection may be the most powerful selective force maintaining balanced natural polymorphisms but it is also commonly misinterpreted. The aim of this review is to clarify the processes underlying negative frequency-dependent selection, describe classes of natural polymorphisms that can and cannot result from these processes, and discuss observational and experimental data that can aid in accurately identifying the processes that generated or are maintain diversity in nature. Finally, I consider the importance of accurately describing the processes affecting genetic diversity within populations as it relates to research progress.


Parasitology ◽  
1990 ◽  
Vol 100 (S1) ◽  
pp. S63-S73 ◽  
Author(s):  
R. Dawkins

Eavesdrop morning coffee at any major centre of evolutionary theory today, and you will find ‘parasite’ to be one of the commonest words in the language. Parasites are touted as prime movers in the evolution of sex, promising the final solution to that problem of problems, the puzzle that led G. C. Williams to proclaim in 1975 ‘a kind of crisis’ at hand in evolutionary biology (Hamilton, 1980; Tooby, 1982; Seger & Hamilton, 1988). Parasites seem to offer a plausible justification for the otherwise futile effort females put into choosing among posturing males (Hamilton & Zuk, 1982; but see Read, 1990). Frequency-dependent selection exerted by parasites is, according to one admittedly minority view, largely responsible for the high levels of diversity found in gene pools (Clarke, 1979). One might even extrapolate to a time when the entire metazoan body could come to be seen as a gigantic adaptation against microscopic pathogens.


Author(s):  
Günter P. Wagner

Homology—a similar trait shared by different species and derived from common ancestry, such as a seal's fin and a bird's wing—is one of the most fundamental yet challenging concepts in evolutionary biology. This book provides the first mechanistically based theory of what homology is and how it arises in evolution. The book argues that homology, or character identity, can be explained through the historical continuity of character identity networks—that is, the gene regulatory networks that enable differential gene expression. It shows how character identity is independent of the form and function of the character itself because the same network can activate different effector genes and thus control the development of different shapes, sizes, and qualities of the character. Demonstrating how this theoretical model can provide a foundation for understanding the evolutionary origin of novel characters, the book applies it to the origin and evolution of specific systems, such as cell types; skin, hair, and feathers; limbs and digits; and flowers. The first major synthesis of homology to be published in decades, this book reveals how a mechanistically based theory can serve as a unifying concept for any branch of science concerned with the structure and development of organisms, and how it can help explain major transitions in evolution and broad patterns of biological diversity.


Author(s):  
Timothy G. Barraclough

‘Species’ are central to understanding the origin and dynamics of biological diversity; explaining why lineages split into multiple distinct species is one of the main goals of evolutionary biology. However, the existence of species is often taken for granted, and precisely what is meant by species and whether they really exist as a pattern of nature has rarely been modelled or critically tested. This novel book presents a synthetic overview of the evolutionary biology of species, describing what species are, how they form, the consequences of species boundaries and diversity for evolution, and patterns of species accumulation over time. The central thesis is that species represent more than just a unit of taxonomy; they are a model of how diversity is structured as well as how groups of related organisms evolve. The author adopts an intentionally broad approach to consider what species constitute, both theoretically and empirically, and how we detect them, drawing on a wealth of examples from microbes to multicellular organisms.


Evolution ◽  
1973 ◽  
Vol 27 (4) ◽  
pp. 558 ◽  
Author(s):  
R. Nassar ◽  
H. J. Muhs ◽  
R. D. Cook

Sign in / Sign up

Export Citation Format

Share Document