The Calder´on-Zygmund Theory II: Maximal Hypoellipticity

Author(s):  
Brian Street

This chapter remains in the single-parameter case and turns to the case when the metric is a Carnot–Carathéodory (or sub-Riemannian) metric. It defines a class of singular integral operators adapted to this metric. The chapter has two major themes. The first is a more general reprise of the trichotomy described in Chapter 1 (Theorem 2.0.29). The second theme is a generalization of the fact that Euclidean singular integral operators are closely related to elliptic partial differential equations. The chapter also introduces a quantitative version of the classical Frobenius theorem from differential geometry. This “quantitative Frobenius theorem” can be thought of as yielding “scaling maps” which are well adapted to the Carnot–Carathéodory geometry, and is of central use throughout the rest of the monograph.

Author(s):  
Brian Street

This chapter develops the theory of multi-parameter Carnot–Carathéodory geometry, which is needed to study singular integral operators. In the case when the balls are of product type, all of the results are simple variants of results in the single-parameter theory. When the balls are not of product type, these ideas become more difficult. What saves the day is the quantitative Frobenius theorem given in Chapter 2. This can be used to estimate certain integrals, as well as develop an appropriate maximal function and an appropriate Littlewood–Paley square function, all of which are essential to our study of singular integral operators.


Author(s):  
Brian Street

This chapter discusses a few special cases where a theory of multi-parameter singular integral operators has already been developed. These include the product theory of singular integrals, convolution with flag kernels on graded groups, convolution with both the left and right invariant Calderón–Zygmund singular integral operators on stratified Lie groups, and composition of standard pseudodifferential operators with certain singular integrals corresponding to non-Euclidean geometries. The chapter outlines these examples and their applications and relates them to the trichotomy discussed in Chapter 1.


Author(s):  
Brian Street

This chapter turns to a general theory which generalizes and unifies all of the examples in the preceding chapters. A main issue is that the first definition from the trichotomy does not generalize to the multi-parameter situation. To deal with this, strengthened cancellation conditions are introduced. This is done in two different ways, resulting in four total definitions for singular integral operators (the first two use the strengthened cancellation conditions, while the later two are generalizations of the later two parts of the trichotomy). Thus, we obtain four classes of singular integral operators, denoted by A1, A2, A3, and A4. The main theorem of the chapter is A1 = A2 = A3 = A4; i.e., all four of these definitions are equivalent. This leads to many nice properties of these singular integral operators.


Author(s):  
Brian Street

This chapter discusses a case for single-parameter singular integral operators, where ρ‎ is the usual distance on ℝn. There, we obtain the most classical theory of singular integrals, which is useful for studying elliptic partial differential operators. The chapter defines singular integral operators in three equivalent ways. This trichotomy can be seen three times, in increasing generality: Theorems 1.1.23, 1.1.26, and 1.2.10. This trichotomy is developed even when the operators are not translation invariant (many authors discuss such ideas only for translation invariant, or nearly translation invariant operators). It also presents these ideas in a slightly different way than is usual, which helps to motivate later results and definitions.


2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Soichiro Suzuki

AbstractIn 2019, Grafakos and Stockdale introduced an $$L^q$$ L q mean Hörmander condition and proved a “limited-range” Calderón–Zygmund theorem. Comparing their theorem with the classical one, it requires weaker assumptions and implies the $$L^p$$ L p boundedness for the “limited-range” instead of $$1< p < \infty $$ 1 < p < ∞ . However, in this paper, we show that the $$L^q$$ L q mean Hörmander condition is actually enough to obtain the $$L^p$$ L p boundedness for all $$1< p < \infty $$ 1 < p < ∞ even in the worst case $$q=1$$ q = 1 . We use a similar method to that used by Fefferman (Acta Math 124:9–36, 1970): form the Calderón–Zygmund decomposition with the bounded overlap property and approximate the bad part. Also we give a criterion of the $$L^2$$ L 2 boundedness for convolution type singular integral operators under the $$L^1$$ L 1 mean Hörmander condition.


2020 ◽  
Vol 18 (1) ◽  
pp. 715-730
Author(s):  
Javanshir J. Hasanov ◽  
Rabil Ayazoglu ◽  
Simten Bayrakci

Abstract In this article, we consider the Laplace-Bessel differential operator {\Delta }_{{B}_{k,n}}=\mathop{\sum }\limits_{i=1}^{k}\left(\frac{{\partial }^{2}}{\partial {x}_{i}^{2}}+\frac{{\gamma }_{i}}{{x}_{i}}\frac{\partial }{\partial {x}_{i}}\right)+\mathop{\sum }\limits_{i=k+1}^{n}\frac{{\partial }^{2}}{\partial {x}_{i}^{2}},{\gamma }_{1}\gt 0,\ldots ,{\gamma }_{k}\gt 0. Furthermore, we define B-maximal commutators, commutators of B-singular integral operators and B-Riesz potentials associated with the Laplace-Bessel differential operator. Moreover, we also obtain the boundedness of the B-maximal commutator {M}_{b,\gamma } and the commutator {[}b,{A}_{\gamma }] of the B-singular integral operator and Hardy-Littlewood-Sobolev-type theorem for the commutator {[}b,{I}_{\alpha ,\gamma }] of the B-Riesz potential on B-Morrey spaces {L}_{p,\lambda ,\gamma } , when b\in {\text{BMO}}_{\gamma } .


2015 ◽  
Vol 27 (1) ◽  
Author(s):  
Feng Liu ◽  
Huoxiong Wu

AbstractThis paper gives a criterion on the weighted norm estimates of the oscillatory and variation operators for the commutators of Calderón–Zygmund singular integrals in dimension 1. As applications, the weighted


Sign in / Sign up

Export Citation Format

Share Document