Introduction

Author(s):  
John von Neumann

This introductory chapter provides a brief summary of the discussions in the succeeding chapters. Here, the new quantum mechanics has in recent years achieved in its essential parts what is presumably a definitive form: the so-called “transformation theory.” Therefore the principal emphasis shall be placed on the general and fundamental questions which have arisen in connection with this theory. In particular, the difficult problems of interpretation, many of which are even now not fully resolved, will be investigated in detail. In this connection, the relation of quantum mechanics to statistics and to the classical statistical mechanics is of special importance.

Author(s):  
C. Huang ◽  
Yong-Chang Huang ◽  
Yi-You Nie

This paper derives measurement and identical principles, then makes the two principles into measurement and identical theorems of quantum mechanics, plus the three theorems derived earlier, we deduce the axiom system of current quantum mechanics, the general quantum theory no axiom presumptions not only solves the crisis to understand in current quantum mechanics, but also obtains new discoveries, e.g., discovers the velocities of quantum collapse and entanglement are instantaneously infinitely large. We deduce the general Schrȍdinger equation of any n particles from two aspects, and the wave function not only has particle properties of the complex square root state vector of the classical probability density of any n particles, but also has the plane wave properties of any n particles. Thus, the current crisis of the dispute about the origin of wave- particle duality of any n microscopic particles is solved. We display the classical locality and quantum non-locality for any n particle system, show entanglement origins, and discover not only any n-particle wave function system has the original, superposition and across entanglements, but also the entanglements are of interactions preserving conservation or correlation, three kinds of entanglements directly give lots of entanglement sources. This paper discovers, one of two pillars of modern physics, quantum mechanics of any n particle system is a generalization ( mechanics ) theory of the complex square root ( of real density function ) of classical statistical mechanics, any n particle system’s quantum mechanics of being just a generalization theory of the complex square root of classical statistical mechanics is both a revolutionary discovery and key new physics, which are influencing people’s philosophical thinking for modern physics, solve all the crisises in current quantum theories, quantum information and so on, and make quantum theory have scientific solid foundations checked, no basic axiom presumption and no all quantum strange incomprehensible properties, because classical statistical mechanics and its complex square root have scientific solid foundations checked. Thus, all current studies on various entanglements and their uses to quantum computer, quantum information and so on must be further updated and classified by the new entanglements. This and our early papers derive quantum physics, solve all crisises of basses of quantum mechanics, e.g., wave-particle duality & the first quantization origins, quantum nonlocality, entanglement origins & classifications, wave collapse and so on.Key words: quantum mechanics, operator, basic presumptions, wave-particle duality, principle of measurement, identical principle, superposition principle of states, entanglement origin, quantum communication, wave collapse, classical statistical mechanics, classical mechanics


Author(s):  
C. D. McCoy

AbstractThe conspicuous similarities between interpretive strategies in classical statistical mechanics and in quantum mechanics may be grounded on their employment of common implementations of probability. The objective probabilities which represent the underlying stochasticity of these theories can be naturally associated with three of their common formal features: initial conditions, dynamics, and observables. Various well-known interpretations of the two theories line up with particular choices among these three ways of implementing probability. This perspective has significant application to debates on primitive ontology and to the quantum measurement problem.


Author(s):  
David Wallace

This introductory chapter provides an overview of philosophy of physics, which is an interdisciplinary field sitting between physics proper, mainstream philosophy, and the general philosophy of science, and communicating ideas and insights between them. Philosophy of physics is mostly concerned not with physics as a whole but with particular areas within it. Given a field in physics, one can consider the conceptual—that is, philosophical—questions that arise in that field, and the problems in each sub-field are distinctive. The chapter briefly discusses many of these, including some in cutting-edge areas of physics like quantum cosmology, black holes, and string theory. But it notes that the bulk of work in philosophy of physics is concerned with three areas where the physics is reasonably well established: the philosophy of spacetime; the philosophy of statistical mechanics; and the philosophy of quantum mechanics.


2006 ◽  
Vol 21 (26) ◽  
pp. 5299-5316
Author(s):  
STEPHAN I. TZENOV

Starting from a simple classical framework and employing some stochastic concepts, the basic ingredients of the quantum formalism are recovered. It has been shown that the traditional axiomatic structure of quantum mechanics can be rebuilt, so that the quantum mechanical framework resembles to a large extent that of the classical statistical mechanics and hydrodynamics. The main assumption used here is the existence of a random irrotational component in the classical momentum. Various basic elements of the quantum formalism (calculation of expectation values, the Heisenberg uncertainty principle, the correspondence principle) are recovered by applying traditional techniques, borrowed from classical statistical mechanics.


Sign in / Sign up

Export Citation Format

Share Document