scholarly journals Prototipe Automatic Feeder dengan Monitoring IoT untuk Perikanan Bioflok Lele

Electrician ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 58-63
Author(s):  
Hari Maghfiroh ◽  
Chico Hermanu ◽  
Feri Adriyanto

Revolusi Industri 4.0 telah banyak membawa banyak perubahan baik itu positif maupun negartif. Segi positifnya yaitu telah banyak dipakainya otomasi dan robot di dunia industri sehingga produksi bisa meningkat pesat. Sedangkan sudut negatif, semakin banyaknya pekerjaan manusia yang tergantikan oleh mesin sehingga memperkecil peluang kerja. Adanya revolusi industri 4.0 juga membawa kesenjangan antara kelompok melek teknologi dan kelompok gagap teknologi (gaptek). Warga kampung atau desa merupakan kelompok besar dari golongan gaptek. Untuk itu, suatu peluang usaha baru yang dapat dikerjakan msyarakat desa dengan tingkat pendidikan menengah sangat diperlukan. Maka dipilihlah program perikanan bioflok lele. Sentuhan teknologi otomasi dan Internet of Things (IoT) diberikan untuk meningkatkan produktivitas dan membuat masyarakat melek akan perkembangan teknologi era revolusi industry 4.0.

2021 ◽  
Vol 113 (7-8) ◽  
pp. 2395-2412
Author(s):  
Baudouin Dafflon ◽  
Nejib Moalla ◽  
Yacine Ouzrout

AbstractThis work aims to review literature related to the latest cyber-physical systems (CPS) for manufacturing in the revolutionary Industry 4.0 for a comprehensive understanding of the challenges, approaches, and used techniques in this domain. Different published studies on CPS for manufacturing in Industry 4.0 paradigms through 2010 to 2019 were searched and summarized. We, then, analyzed the studies at a different granularity level inspecting the title, abstract, and full text to include in the prospective study list. Out of 626 primarily extracted relevant articles, we scrutinized 78 articles as the prospective studies on CPS for manufacturing in Industry 4.0. First, we analyzed the articles’ context to identify the major components along with their associated fine-grained constituents of Industry 4.0. Then, we reviewed different studies through a number of synthesized matrices to narrate the challenges, approaches, and used techniques as the key-enablers of the CPS for manufacturing in Industry 4.0. Although the key technologies of Industry 4.0 are the CPS, Internet of Things (IoT), and Internet of Services (IoS), the human component (HC), cyber component (CC), physical component (PC), and their HC-CC, CC-PC, and HC-PC interfaces need to be standardized to achieve the success of Industry 4.0.


Author(s):  
Petar Radanliev ◽  
David De Roure ◽  
Razvan Nicolescu ◽  
Michael Huth ◽  
Omar Santos

AbstractThis paper presents a new design for artificial intelligence in cyber-physical systems. We present a survey of principles, policies, design actions and key technologies for CPS, and discusses the state of art of the technology in a qualitative perspective. First, literature published between 2010 and 2021 is reviewed, and compared with the results of a qualitative empirical study that correlates world leading Industry 4.0 frameworks. Second, the study establishes the present and future techniques for increased automation in cyber-physical systems. We present the cybersecurity requirements as they are changing with the integration of artificial intelligence and internet of things in cyber-physical systems. The grounded theory methodology is applied for analysis and modelling the connections and interdependencies between edge components and automation in cyber-physical systems. In addition, the hierarchical cascading methodology is used in combination with the taxonomic classifications, to design a new integrated framework for future cyber-physical systems. The study looks at increased automation in cyber-physical systems from a technical and social level.


2021 ◽  
pp. 204388692098158
Author(s):  
Dipankar Chakrabarti ◽  
Rohit Kumar ◽  
Soumya Sarkar ◽  
Arindam Mukherjee

Industrial Internet of Things emerged as one of the major technologies enabling Industry 4.0 for industries. Multiple start-ups started working in the Industrial Internet of Things field to support this new industrial revolution. Distronix, one such Industrial Internet of Things start-up of India, started operations in 2014, when companies were not even aware of Industrial Internet of Things. Distronix started executing fixed-fee projects for implementation of Industrial Internet of Things. They also started manufacturing sensors to support large customers end-to-end in their Industry 4.0 journey. With the advent of public cloud, companies started demanding pay-per-use model for the solution Distronix provided. This posed a major challenge to Distronix as they had developed technology skills focusing fixed-fee customized project delivery for their clients. The situation demanded that they change their business model from individual project delivery to creation of product sand-box with pre-registered sensors and pre-defined visualization layer to support use cases for Industrial Internet of Things implementation in multiple industry sectors. It forced Rohit Sarkar, the 26 years old entrepreneur and owner of Distronix, to upgrade capabilities of his employees and transform the business model to support pay-per-use economy popularized by public cloud providers. The case discusses the challenges Rohit faced to revamp their business model in such an emerging technology field, like, to develop new skills of the technical people to support such novel initiative, reorienting sales people towards pay as use model, developing new concept of plug and play modular product, devising innovative pricing, better alliance strategy and finding out a super early adopter.


2021 ◽  
Vol 58 ◽  
pp. 176-192
Author(s):  
Diego G.S. Pivoto ◽  
Luiz F.F. de Almeida ◽  
Rodrigo da Rosa Righi ◽  
Joel J.P.C. Rodrigues ◽  
Alexandre Baratella Lugli ◽  
...  

Author(s):  
Leila Zemmouchi-Ghomari

Industry 4.0 is a technology-driven manufacturing process that heavily relies on technologies, such as the internet of things (IoT), cloud computing, web services, and big real-time data. Industry 4.0 has significant potential if the challenges currently being faced by introducing these technologies are effectively addressed. Some of these challenges consist of deficiencies in terms of interoperability and standardization. Semantic Web technologies can provide useful solutions for several problems in this new industrial era, such as systems integration and consistency checks of data processing and equipment assemblies and connections. This paper discusses what contribution the Semantic Web can make to Industry 4.0.


Author(s):  
John P.T. Mo ◽  
Ronald C. Beckett

Since the announcement of Industry 4.0 in 2012, multiple variants of this industry paradigm have emerged and built on the common platform of Internet of Things. Traditional engineering driven industries such as aerospace and automotive are able to align with Industry 4.0 and operate on requirements of the Internet of Things platform. Process driven industries such as water treatment and food processing are more influenced by societal perspectives and evolve into Water 4.0 or Dairy 4.0. In essence, the main outcomes of these X4.0 (where X can be any one of Quality, Water or a combination of) paradigms are facilitating communications between socio-technical systems and accumulating large amount of data. As the X4.0 paradigms are researched, defined, developed and applied, many real examples in industries have demonstrated the lack of system of systems design consideration, e.g. the issue of training together with the use of digital twin to simulate operation scenarios and faults in maintenance may lag behind events triggered in the hostile real world environment. This paper examines, from a high level system of systems perspective, how transdisciplinary engineering can incorporate data quality on the often neglected system elements of people and process while adapting applications to operate within the X4.0 paradigms.


Sign in / Sign up

Export Citation Format

Share Document