scholarly journals Mathematical model of improved reverse charging of wireless internet pricing scheme in servicing multiple QoS

2020 ◽  
Vol 1 (2) ◽  
pp. 89
Author(s):  
Fitri Maya Puspita

This paper seeks to utilize the improved model of reverse charging scheme.  Reverse charging basically is defined as a capability of stored network that replaces the network used when the network is suddenly shut down. In this paper,  charging back on 3G and 4G network that is user automated platform, will change the access of 4G to 3G and on the contrary when platform conduct the hosting. This research was solved as a problem Mixed Integer Nonlinear Programming (MINLP) by LINGO 13.0. An optimal pricing scheme is applied to a local data server, including digilib traffic and mail traffic. The improved model of Reverse Charging is modified into 4 cases and formed by setting the base price (α) and service level (β). Based on the analysis that has been done, the results of this study indicate that the reverse charging model can be utilized Internet Service Provider (ISP) to maximize profits and provide quality services for the user if compared to previous model without reverse charging scheme. Keywords: improved model of revere charging scheme, MINLP, ISP, QoS, pricing scheme

Author(s):  
Indrawati Indrawati ◽  
Fitri Maya Puspita ◽  
Desta Wahyuni ◽  
Evi Yuliza ◽  
Oki Dwipurwani

In this study, the pricing scheme that will be formed is a model from the previous research model involving model of cloud-radio access network (C-RAN) and fair network management models. This model combines the benefits of internet service provider (ISP) and service quality (QoS) obtained by internet users, one of which is fair network factors. The model used is a nonlinear equation and is solved by the LINGO 13.0 program to get the optimal solution. The results show that the pricing scheme with regard to service quality generates maximum revenue for ISPs. Based on the improved C-RAN model that are classified into 2 cases, the optimal results in the improved model, the optimal value is found in the pricing scheme in case 1 of by conducting numerical computation using  hotspot traffic from local server.


Author(s):  
Irmeilyana Irmeilyana ◽  
Fitri Maya Puspita ◽  
Indrawati Indrawati ◽  
Rahayu Tamy Agustin

Pricing schemes were set up on multi service network of wireless internet pricing scheme to proposed models applying Bit Error Rate QoS attribute due to requirements for ISP to maximize revenue and provide high quality of service to end users.The model was deigned by improving the original model together with added parameters and variables to the model of multi- service network by setting the base price (α) and premium quality (β) as variables and parameters. LINGO 11.0 were applied to help finding the solution. The results show that the improved models yield maximum revenue for ISP by applying the improved model by setting up a variable α and β as constant as well as by increasing the cost of all the changes in QoS. The QoS attriute BER is proven to achieve the ISP’s goal to maximize the revenue.


Author(s):  
Peng Li ◽  
Di Wu

The rapid development of e-commerce technologies has encouraged collection centers to adopt online recycling channels in addition to their existing traditional (offline) recycling channels, such the idea of coexisting traditional and online recycling channels evolved a new concept of a dual-channel reverse supply chain (DRSC). The adoption of DRSC will make the system lose stability and fall into the trap of complexity. Further the consumer-related factors, such as consumer preference, service level, have also severely affected the system efficiency of DRSC. Therefore, it is necessary to help DRSCs to design their networks for maintaining competitiveness and profitability. This paper focuses on the issues of quantitative modelling for the network design of a general multi-echelon, dual-objective DRSC system. By incorporating consumer preference for the online recycling channel into the system, we investigate a mixed integer linear programming (MILP) model to design the DRSC network with uncertainty and the model is solved using the ε-constraint method to derive optimal Pareto solutions. Numerical results show that there exist positive correlations between consumer preference and total collective quantity, online recycling price and the system profits. The proposed model and solution method could assist recyclers in pricing and service decisions to achieve a balance solution for economic and environmental sustainability.


Author(s):  
Amandeep Kaur Sandhu ◽  
Jyoteesh Malhotra

This article describes how a rapid increase in usage of internet has emerged from last few years. This high usage of internet has occurred due to increase in popularity of multimedia applications. However, there is no guarantee of Quality of Service to the users. To fulfill the desired requirements, Internet Service Providers (ISPs) establish a service level agreement (SLA) with clients including specific parameters like bandwidth, reliability, cost, power consumption, etc. ISPs make maximum SLAs and decrease energy consumption to raise their profit. As a result, users do not get the desired services for which they pay. Virtual Software Defined Networks are flexible and manageable networks which can be used to achieve these goals. This article presents shortest path algorithm which improves the matrices like energy consumption, bandwidth usage, successful allocation of nodes in the network using VSDN approach. The results show a 40% increase in the performance of proposed algorithms with a respect to existing algorithms.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Feng Chu ◽  
Lu Wang ◽  
Xin Liu ◽  
Chengbin Chu ◽  
Yang Sui

Ambulance location problem is a key issue in Emergency Medical Service (EMS) system, which is to determine where to locate ambulances such that the emergency calls can be responded efficiently. Most related researches focus on deterministic problems or assume that the probability distribution of demand can be estimated. In practice, however, it is difficult to obtain perfect information on probability distribution. This paper investigates the ambulance location problem with partial demand information; i.e., only the mean and covariance matrix of the demands are known. The problem consists of determining base locations and the employment of ambulances, to minimize the total cost. A new distribution-free chance constrained model is proposed. Then two approximated mixed integer programming (MIP) formulations are developed to solve it. Finally, numerical experiments on benchmarks (Nickel et al., 2016) and 120 randomly generated instances are conducted, and computational results show that our proposed two formulations can ensure a high service level in a short time. Specifically, the second formulation takes less cost while guaranteeing an appropriate service level.


2021 ◽  
Author(s):  
◽  
Duncan Cameron

<p>The provision of rural broadband infrastructure is a challenge for network operators across the globe, irrespective of their size. Wireless Internet Service Providers (WISPs) have shown that the small-scale deployment of wireless broadband infrastructure is a viable alternative to relying on cellular network providers for remote coverage. However, WISPs must often resort to using off-grid renewable energy sources such as solar energy for powering network sites, often resulting in undesirable, low-performance backhaul radios being used between sites out of concern for excessive energy consumption.  The challenges of managing performant wireless backhaul networks in respect to energy constraints at remote, off-grid sites informs the need for energy-proportional design. Backhaul radios typically used by WISPs are not energy-proportional, meaning they use a consistent amount of energy, irrespective of wireless link utilisation. Using data from a real WISP network, diurnal traffic patterns show that WISP networks could benefit from energy-proportional design, without having to sacrifice performance.  To encourage the development of high-performance, energy-proportional WISP backhaul networks, ElasticWISP, an optimisation architecture that reduces network-wide backhaul energy consumption while satisfying the user-demand for traffic, is introduced. ElasticWISP dynamically controls the configuration of backhaul radios based on bandwidth demands and the network-wide energy consumption of these radios. Through simulations driven by real WISP topology and data traffic, results show that ElasticWISP can offer energy savings of approximately 65% when WISP operators follow the proposed backhaul design methodology.  Finally, a lightweight Multiprotocol Label Switching (MPLS)-based traffic engineering scheme, based on Segment Routing, is proposed. The implementation, named Segment Routing over MPLS (SR-MPLS), keeps traffic engineering path-state within each packet, meaning per-flow state is only held at SR-MPLS ingress routers. The lightweight approach of SR-MPLS also eliminates the otherwise necessary network-wide label flooding of traditional Segment Routing, making it ideal for bandwidth-sensitive wireless backhaul networks. Evaluation of SR-MPLS shows that it can perform as well as – and sometimes better than – competitor schemes.</p>


Author(s):  
Robinson Sitepu ◽  
Fitri Maya Puspita ◽  
Elika Kurniadi ◽  
Yunita Yunita ◽  
Shintya Apriliyani

<span>The development of the internet in this era of globalization has increased fast. The need for internet becomes unlimited. Utility functions as one of measurements in internet usage, were usually associated with a level of satisfaction of users for the use of information services used. There are three internet pricing schemes used, that are flat fee, usage based and two-part tariff schemes by using one of the utility function which is Bandwidth Diminished with Increasing Bandwidth with monitoring cost and marginal cost. Internet pricing scheme will be solved by LINGO 13.0 in form of non-linear optimization problems to get optimal solution. The optimal solution is obtained using the either usage-based pricing scheme model or two-part tariff pricing scheme model for each services offered, if the comparison is with flat-fee pricing scheme. It is the best way for provider to offer network based on usage based scheme. The results show that by applying two part tariff scheme, the providers can maximize its revenue either for homogeneous or heterogeneous consumers.</span>


Sign in / Sign up

Export Citation Format

Share Document