2021 ◽  
Vol 16 ◽  
pp. 155892502110223
Author(s):  
Jie Xu ◽  
Feng Liu ◽  
Zhenglei He ◽  
Zongao Zhang ◽  
Sheng Li

Sodium hypochlorite bleaching washing process has been broadly carried out in denim garment industrial production. However, the quantitative relationships between process variables and bleaching performances have not been illustrated explicitly. Hence, it is impractical to determine values of the variables that can achieve the optimal production cost while satisfying the requirements of customers. This paper proposes an optimization methodology by combining ensemble of surrogates (ESs) with particle swarm optimization (PSO) to optimize production cost of chlorine bleaching for denim. The methodology starts from the data collections by conducting a Taguchi L25 (56) orthogonal experiment with the process variables and metrics for evaluating bleaching performances. Based on the data, the quantitative relationships are separately constructed by using RBFNN, SVR, RF and ensemble of them. Then, accuracies of the surrogates are evaluated and it proves that the ESs outperforms the others. Later, the production cost optimization model is proposed and PSO is utilized to solve it, while a case study is given to depict the optimization process and verify the effectiveness of the proposed hybrid ESs-PSO approach. Overall, the ESs-PSO approach shows great capability of optimizing production cost of sodium hypochlorite bleaching washing for denim.


2013 ◽  
Vol 791-793 ◽  
pp. 1423-1426
Author(s):  
Hai Min Wei ◽  
Rong Guang Liu

Project schedule management is the management to each stage of the degree of progress and project final deadline in the project implementation process. Its purpose is to ensure that the project can meet the time constraints under the premise of achieving its overall objectives.When the progress of schedule found deviation in the process of schedule management ,the progress of the plan which have be advanced previously need to adjust.This article mainly discussed to solve the following two questions:establish the schedule optimization model by using the method of linear;discuss the particle swarm optimization (PSO) algorithm and its parameters which have effect on the algorithm:Particle swarm optimization (PSO) algorithm is presented in the time limited project and the application of a cost optimization.


2018 ◽  
Vol 10 (10) ◽  
pp. 3791 ◽  
Author(s):  
Daqing Wu ◽  
Jiazhen Huo ◽  
Gefu Zhang ◽  
Weihua Zhang

This paper aims to simultaneously minimize logistics costs and carbon emissions. For this purpose, a mathematical model for a three-echelon supply chain network is created considering the relevant constraints such as capacity, production cost, transport cost, carbon emissions, and time window, which will be solved by the proposed quantum-particle swarm optimization algorithm. The three-echelon supply chain, consisting of suppliers, distribution centers, and retailers, is established based on the number and location of suppliers, the transport method from suppliers to distribution centers, and the quantity of products to be transported from suppliers to distribution centers and from these centers to retailers. Then, a quantum-particle swarm optimization is described as its performance is validated with different benchmark functions. The scenario analysis validates the model and evaluates its performance to balance the economic benefit and environmental effect.


Author(s):  
Jiten Makadia ◽  
C.D. Sankhavara

Swarm Intelligence algorithms like PSO (Particle Swarm Optimization), ACO (Ant Colony Optimization), ABC (Artificial Bee Colony), Glow-worm swarm Optimization, etc. have been utilized by researchers for solving optimization problems. This work presents the application of a novel modified EHO (Elephant Herding Optimization) for cost optimization of shell and tube heat exchanger. A comparison of the results obtained by EHO in two benchmark problems shows that it is superior to those obtained with genetic algorithm and particle swarm optimization. The overall cost reduction is 13.3 % and 9.68% for both the benchmark problem compared to PSO. Results indicate that EHO can be effectively utilized for solving real-life optimization problems.


2011 ◽  
Vol 383-390 ◽  
pp. 4125-4129
Author(s):  
Ling Tzu Tseng

Bullwhip Effect, Particle Swarm Optimization, Supply Chain, Demand Information Abstract. A deformation phenomenon occurring in business activity, called the bullwhip effect which comes from the demand information is not fully shared among the members of a supply chain, conducts the upstream manufacturer to excessively anticipate the demand capacity of the downstream retailer. The manufacturer improperly decides the amount of the products not only to raise the inventory cost on the way of poorly handling the actually downstream demand, but also to lose the chance of business deals due to its backordering. To cope with the bullwhip effect by taking into account the holding and backorder costs, an evolutionary method based on the Particle Swarm Optimization (PSO) algorithm to estimate the critical parameter, mean downstream demand, is proposed and computer validated in this paper such that the estimated inventory level could be close the really batch ordering of the manufacturer.


Sign in / Sign up

Export Citation Format

Share Document